IV Ukrainian Programming Cup
2025

Contest 7, div 1

Official solutions



Problem A - Around the table

Statement: There is a hidden circular permutation p of size N <= 1e5.You have to find it using
at most 60 queries.

Query: you can query by giving a permutation g of size N and the answer will be the set of all
elements that appear in g before their neighbours from p.



Problem A - Around the table

Note: we will call the elements node and say we have an edge between two nodes if they are neighbours in
the hidden permutation.

Note: for a specific node we can easily binary search its neighbours, but we would like to be able to
parallelize that

= We will try to split the nodes into 3 independent sets A, B, C (a set is independent if it doesn’t contain
neighbours)

After we have the sets A, B, C we can do 2 binary searches to find the neighbours of nodesin A in B U C
(first the first neighbour and then the last neighbour). Then, because each node in B has at most one
neighbour in C (why? see slide 5) we can find the edges between B and C with only one binary search.

No of queries for binary searches: 3 * log(N) = 48



Problem A - Around the table

Computing set A:

Note: In order to be able to split the rest of the nodes into B and C, set A has to be maximal (see why on
the next slide)

To build set A we will first ask random queries until each node has been included in at least one of the
answers. In practice this takes only a few tries, out of 1000 experiments, the biggest number of tries
required was 6 so we will use this number for further analysis of the solution.

Now we have 6 sets of independent nodes (Al’ A,A,A,A, A6) which are not necessarily maximal so we
will try make the first set maximal by including elements from the other 5 sets.

If we have a candidate A and we want to add the nodes from A _ into it we just have to make a query with
all the nodes in A followed by all the nodes in 2, followed by the rest of the nodes.

No of queries tocomputesetA: at most 6 + 5 = 11



Problem A - Around the table

Computing sets Band C:

Getting back to why set A had to be maximal: the fact that A is maximal means that there are no three
nodes that are consecutive in p and are not included in A (otherwise we could add the middle element to A
which contradicts with the fact that it is maximal)

= if we look at the set of nodes that arenotin2a = A™!,each nodeinset 27! has at most one neighbour
thatisalsoin A~ = we can split A7 into B and C using only one query

= Total number of queries (inworstcase): 3 * log(N) + 11 + 1 = 60




Problem B - Divisible Trees

Statement: Let A be a tree (connected undirected graph) and k be a positive integer. We define k
* A as the set of trees that contain k trees that are isomorphicwithrand k - 1 extraedgesto
connect them. Then we say that a tree A divides a tree B iff there is a positive integer k such that
B € k * A.

Given a tree T, count the number of distinct (not isomorphic) trees that divide it.



Problem B - Divisible Trees

Let n be the size of tree T
Note that a tree 2 of size p can be a divisor of T only if p divides n

Not let’s look at a fixed p and try to see how many trees of size p can be divisors of T. Let us choose a root
for T and order its nodes by height. If we then iterate over the nodes from bottom to top, when the
subtree of a node has size p, then this subtree should be an instance of the divisor tree and we can
disconnect it from the rest of the graph. This way we can uniquely split the tree into subtrees of size p

= there can be at most one divisor of size p

Now we only thing left to do is to check if the resulting subtrees are isomorphic (and we can do this by
hashing their linearizations https://codeforces.com/blog/entry/101010)



https://codeforces.com/blog/entry/101010

Problem C - The Quest for the Sacred Grove

Statement: We are given a tree of N nodes and a permutation P of length N. Find the number of
subsequences [I, r] such that P[], P[l + 1], ..., P[r] induces a connected subgraph.



Problem C - The Quest for the Sacred Grove

Let [l, r] be a subsequence of the permutation.

[, r]is connected iff (r - | + 1) - num_of_edges = 1.

num_of_edges is the number of edges which have both extremities inside [I, r].
The value (r -1+ 1) - num_of_edges >= 1 for every [, r].

We iterate over r. We update the prefix [1...r] with +1 and for every edge (P[i], P[r]) where i < r we update prefix
[1...]] with -1. Now we have to find the minimum value and its frequency using a lazy segment tree.

Total complexity is O(Nlog(N)).



Problem D - The Romanian Sieve

Statment: Given the algorithm on the right
and T, find biggest N such that iters will be int64_t iters = 0;
<=T. for (int64_t i = 1; i <= n; i++) {
for (int64_t j = j <=n; j+=1) {
max_div[j] =
iterst+;

i3
1y



Problem D - The Romanian Sieve

We binary search for N. (for given constraints N <= 11 * 10*11).

We compute F(N)=N/1+N/2+...+N/(N-1)+N/Nin O(sqrt(N)).
The expression N /i takes O(sqrt(N)) distinct values fori= 1, N.

We add up N /i, for each i <= sqrt(N).

Now for each c < sqrt(N) we count how many i’s exist s.t. N /i =c.
Thisisequalto(N/c)-(N/(c+ 1)).

Total complexity is O(sqrt(N) * log(N)).



Problem E - Goddess of Olympos

Statement: We are given an array T of N integers. For Q queries, calculate the number of subsequences [l,
r] such that min(T[l], ..., T[r]) = X and max(T[l], ..., T[r]) =Y.



Problem E - Goddess of Olympos

Let F(X, Y) = number of subsequences with min(l, r) >= X and max(l,r) <=Y.
Then the answer for a query is:
QX Y)=FX Y)-F(X+1,Y)-F(X,Y-1)+F(X+1,Y - 1) by principle of inclusion exclusion.

Now every query Q(X, Y) will be split into four queries of the F function. Now we will only answer queries
of the F function.



Problem E - Goddess of Olympos

We can now sort the values in the array as pairs P[i] = (T[i], i) in lexicographical order.

For aquery F(X, Y) we will find the range P[a...b] such that P[a].first >= X and P[b].second <=Y. For query
F(X,Y) only positions in P[a...b] will be “active”.

Now we use MQO’s algorithm to solve queries for the ranges in array P.

Total complexity is O((N + Q) * sqrt(N)).



Problem F - The Cypriote Mermaid

Statement: You are given a string Swith 0, 1, and ?. Count in how many ways you can replace ? withO or 1
such that you can reduce the string to the empty string by applying the following operation any number
of times:

Chooseiis.t. S[i] = S[i + 1] and delete them from the string.



Problem F - The Cypriote Mermaid

For every odd index, we flip its value. A string can be reduced to empty iff number of 1’s is equal to
number of O’s. Let freq[c] = frequency of character c.

The answer is

freq[?]
5+ — freq|0]



Problem G - FS's Critical Concert

Statement: Count the total number of critical edges in all the labelled (not necessarily connected)
graphs of size N.



Problem G - FS's Critical Concert

To compute the requested sum we are going to select an edge and count the number of graphs in which
that edge is critical.

An edge (a - b) is critical in a graph where a and b are in different connected components and then we add
edge (a - b). In order to not overcount we are going to iterate over the size of a’s connected component.

n—1
result = (;) ' Z conli] - all[n-1] - (;:: f)

=1
where  all[#] = the number of labelled graphs of size 7 = 2°(/~1)/2

con[7] = the number of labelled connected graphs of size 7



Problem G - FS's Critical Concert

The hard part is to compute conl[i] and in order to do that we'll subtract the number of disconnected

graphs from the total number of graphs and we can count the number of disconnected graph in a similar
way to how we count the graphs for a critical edge.

-1 ;.
con(i] = all[i] — not_con|i] = all[7] - ; (;:11) -conlj] - allli - ]

can[z] _allli] con[J] d”[l—]]
(1—1)' (7 -1)! Z(j—l)' - J)!



Problem G - FS's Critical Concert

We are going to write everything in this equation as a formal series (infinite polynomial) in order to
simplify it.

conl[i] _ all[7] con| ] ﬂll[l—]]
(-1 @-1)! Z 4 (j - D! il

con|7]
Peon = 0+ Z (Z _ 1)'

DPcon = Pall)i = Peon * Pall

— all :
Pall = Z 2 [Z] - X' >
i=1 : Pall)i

== Pcon =
allli] L+ pa
Pallfi = Zl G-




Problem G - FS's Critical Concert




Problem G - FS's Critical Concert

Useful links:

1. source code: https://pastebin.com/LtQLSukM

2. CF blog post that was recommended during editorial:
https://codeforces.com/blog/entry/103979

3. CP Algorithms post: https://cp-algorithms.com/algebra/polynomial.html



https://pastebin.com/LtQLSukM
https://codeforces.com/blog/entry/103979
https://cp-algorithms.com/algebra/polynomial.html

Problem H - The Lottery WINNER

Statement: You are given a list of N strings s[i]. A string has digits, and at most 2 distinct letters. A
character c covers string s[i] if it appears in s[i]. Find the minimum number of characters which cover all

the N strings.



Problem H - The Lottery WINNER

We brute force over all sets of digits and see what strings remain to be covered. For the remaining strings
we will use the letters.

By having at most two letters we can build a graph where each letter is a vertex and every string is an
edge.

On this graph we have to compute minimum vertex cover, which can be done in O(2”(n/2)), by computing
the maximum clique of the complement graph and then taking n - its size.



Problem H - The Lottery WINNER

Let G[conf] = the graph generated by strings whose digits appear in the subset conf. G[conf] can be
computed using SOS dp.

Now when we iterate over all subset of digits the graph we are interested computing minimum vertex
coveronis G[(1 << 10) - 1 - conf].

The solution does 2”23 iterations.



Problem | - The Interview Problem

Statement: You are given a string containing brackets and digits. Each digit means that you have to
delete as many brackets that appear (anywhere) before it in the string.

Check if you can delete brackets such that the result is a balanced bracketing.



Problem | - The Interview Problem

First we compute the number of closed and open brackets that we should delete

n = total number of brackets

open = open brackets

to_delete = the sum of all the digits in the string

= delete _open = open- (n - to _delete) / 2
- we want to delete as many open brackets

Ifwen or to_delete don't have the same parity or the result is negative or bigger then to_delete,
then there’s no solution.

Now we just want to delete the closed brackets from the beginning of the string (and for that we can
iterate over it from left to right) and the opened ones from the end, respecting the digits (and for that we
can iterate over it from right to left).

Afterwards we just have to check if the result is balanced.



Problem J - Split the Picture

Statement: You are given N weighted points x[il,
yli], s[i]. For each 1 <=x < N find y such that
max(S(A), S(B), S(C), S(D)) - min(S(A), S(B), S(C),
S(D)) is minimal.

S(X) = sum of weights of points in quadrant X.

}Jfogg )

\\ 4




Problem J - Split the Picture

For fixed x, we can split y’s into 3 groups:
Z1=[1,y1-1]->min(A, B) =min(A, B, C, D) and max(C, D) = max(A, B, C, D)

Z2 =[y1,y2]-> min(A, B) = min(A, B, C, D) and max(A, B) = max(A, B, C, D) OR min(C, D) = min(A, B, C, D)
and max(C, D) = max(A, B, C, D)

Z3=[y2+1,N-1]->min(C, D) = min(A, B, C, D) and max(A, B) = max(A, B, C, D)



Problem J - Split the Picture

We can binary search y1 and y2, now the optimal y is either y1 - 1,y2 + 1, or the optimal y from [y1, y2].

Let minAB be the minimum difference A - B in [y1, y2], maxAB be the maximum difference A - B in [y1, y2]. We define minCD
and maxCD similarly.

The optimal difference is calculated as max(minAB, -maxAB, minCD, -maxCD). To simplify the implementation, one can see
that minCD and maxCD can be deduced from minAB and maxAB.

Having this in mind, we can do a sweep line, moving points from the right side of x to the left side while maintaining a
segment tree which stores in each interval the sum of weights of points on the left side, the right side, minAB and maxAB.



Problem K - Adrian The Wonder Child

Statement: Given a tree of N nodes with 0-1 labels on the edges, we define a path to be K-alternating if
the length longest sequence of equal labels is <= K. Find the longest K-alternating path we can build by
flipping at most M edges.



Problem K - Adrian The Wonder Child

Let’s look at a fixed path. The edge labels will form a sequence similar to this:
00...00111...11100....00111...1111
Let L[i] be the length of the ith maximal sequence of equal numbers. The minimum number of flip

operations to make it k-alternating is Z (KF—Z)
+1



Problem K - Adrian The Wonder Child

Let’s look at a fixed path. The edge labels will form a sequence similar to this:
00...00111...11100....00111...1111
Let L[i] be the length of the ith maximal sequence of equal numbers. The minimum number of flip

operations to make it k-alternating is Z (KF—Z)
+1



Problem K - Adrian The Wonder Child

We solve by centroid decomposition. Let X be a centroid. We will now find the longest K-alternating path
passing through X. To do this we compute two arrays CO and C1.

Ci[j] =minimum cost required to obtain a path of length j which starts at X and goes downwards on an
edge of color .

We define the cost as a pair (rem, flips) where flips is the minimum number of flips needed to make it K
alternating, and in case of equality we take the path that has the minimum length of the prefix of color i
modulo (K + 1) (rem).

We can observe that both CO and C1 are monotonic.



Problem K - Adrian The Wonder Child

We will process X’s descendants s[1], s[2], ..., in increasing size.
For each descendant s[k] we will compute such a vector Cp, where p is the color of the edge to s[k].

We will now compute the longest K-alternating path which starts somewhere in subtrees s[1], s[2], ..., s[k
- 1] and ends somewhere in s[k] by using the computed CO and C1 so far of X.
b s

This can be done using two-pointers technique. W_/%mg;”;
Thus, the total complexity is O(Nlog(N)). PANE]



Problem L - Single Crossing

Statement: Given a set of N permutations of size M
find out if there is a way to rearrange them so they
form a single-crossing.

Single-crossing = any two elements a and b change
their relative order at most once
(visually: they form at most one crossing)

http://arxiv.org/pdf/2205.09092

- NN =

SRV AN NS Y DO

N >~ = W W

= =S R



http://arxiv.org/pdf/2205.09092

Problem L - Single Crossing

Part 1: Let’s assume the permutations can form a single crossing and find

2
away to arrange them X
Furthermore let’s assume we know which permutation will be first in the x1
new order. If we relabel the elements of all the permutations according to
the first one, we can then compare them by the number of inversions to X5

obtain the final order.

- NN =
w N W = DN
N B ARV

=> there are only two correct orders (the one we find and its reversed)

[l " >SRN SN TN

How to find the first permutation?

We choose any permutation and assume it will be first and relabel all the permutations according to it. The
one that has the most inversions (a.k.a. is farthest from the chosen permutation) will be either the first and
the last permutation of the order.

Make note of the similarity with finding the diameter of a tree.




Problem L - Single Crossing

Part 2: No that we have a way of sorting the permutations, we need to
check if the order respects the single-crossing property

Let’s define the following metrics over our set of permutations:

For any distinct «, & € {1,2,...M } we define:

d, (%, 7) = {

1 otherwise

This is a metric as it is positive (and O only for equal elements), it is symmetrical and it respects the triangle

inequality.

=W NN N

2
1
3
2
3

N &~ = W W

[ = S S ST A

0 if 2 and bhave the same relative order in both X? and X/




n n 3
Problem L - Single Crossing X° 11 2 3 4
X2 |2 WHE 1
Part 2: check if the order respects the single-crossing property 1
X+ |2 & W 4
Because the previously defined functions are metrics, their sumis also a
metric so we have the metric: X5 8 2 4 §
d(z, j) =sum(d,;, (4, j)) foralll <a<b <M X414 3 9 1
Note that this metric represents the relative number of inversions between two permutations so it can be

computedinO(M * log(M))
If (and only if) the permutations respect the single-crossing property, then we have:

d(i, j)=d(i, k) +d(k, j)foralll <i<k<j< N

But it can be proved that it is enough to check the above condition for triplets of the form (1, i, i + 1)



Problem L - Single Crossing

Time complexity:
Part1: O(N * M * log(N)) (depending onthe implementation)
Part2: O(N * M * log(M))

Total time complexity:O(N * M * (log(N) + log(M)))

=W NN N

SV AD WA AV DO

N &~ = W W

[ = S S ST A




