
Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

Problem A. Hard to Compare
We will start with the obvious formula:

f(n, k, x) =
n!(k − x)!g(n− x, k − x)

(n− x)!
,

where g(n− x, k− x) represents the amount of arrays of length n− x containing k− x di�erent values at
least twice each, up to renumerating the values.

The integer values of the function g can be calculated with this dp:

g(x, y) = g(x− 1, y) · y + g(x− 2, y − 1) · (x− 1).

As the memory limit is small, only keep every 25-th diagonal; this will take 4 MB. We keep the diagonals
because if we know a diagonal, we can restore the next one; moreover, all the pairs (n − x, k − x) lie on
the same diagonal for �xed n, k.

To �nd the largest values, we will compare their logarithms. The function ln f(n, k, x) is concave for any
�xed n, k (it's unobvious, but it's true!). Thus, to �nd the 9 greatest values, do the binary search to �nd
the smallest x such that ln f(n, k, x) > ln f(n, k, x+9). The values f(n, k, x), f(n, k, 1), . . . , f(n, k, x+8)
are the greatest ones. If such x does not exist, then the function is an increasing one, so the values
f(n, k, k − 9), f(n, k, k − 8), . . . , f(n, k, k − 1) are the biggest ones.

The logarithm ln g(n − x, k − x) should be calculated in O(1) time and memory. To achieve that,
precalculate all the logarithms locally, and run your favourite machine learning algorithm to get a
regression that approximates the function g(x, y) very precisely. In the author's solution, the space of
arguments is divided in 58 sectors; for each of these sectors, a third degree polynomial regression is
applied with the features x, y, ln(x), ln(y), ln(x − 2y + 1), and some L1 regularization. At each sector,
the mean absolute error ≤ 10−5 has been achieved; thus, the approximation is precise enough to compare
any two values f(n, k, x) and f(n, k, x+ 9). Participants can validate all the comparisons locally and �x
the wrong outcomes (if there are not many of them) just by hardcoding the actual values. The author's
solution required to �x two such values.

Problem B. Conditions
Let's learn how to �nd the next integer that might be a �tting one. If the current value has 7, then go to
the next value without 7 or the next value divisible by k, whichever is smaller. In the second case, while
the current number is in the list and has 7, keep adding k. In both cases, as you reach a value without 7,
keep checking it and the next values until you reach a value with 7 again.

Problem C. Modulo 4
We consider expressions as lists of values. The bits in the values are numbered from least signi�cant to
most signi�cant, starting from 1.

A bit in a certain context is called free if its value does not a�ect whether the expression belongs to Cn.
There are three reasons why a bit can be free:

� it is the n+ 1-th or higher bit;

� to the right of the value with this bit, there is a value with more than n bits;

� from the context, it is known that in another value, the bit at the same position is set to 1.

The most signi�cant bit cannot be free.

Let L be the length of the longest value in the expression.

The number of expressions with L > n+ 2 is 0, as each such expression has at least two free bits.

Page 1 of 8

Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

If L = n + 2 and there is at least one value of length greater than 1 to the left of the long value, then
there are two free bits in this expression. If L = n + 2 and there is a value of any length j ≤ n to the
right of the long value, then in the long value, the bits n+ 1 and j are free. Thus, we are only interested
in two expressions with L = n+ 2: 1|1|...1|1011..1 and 1|1|...1|1111..1, adding 2 to the answer.

Let's consider expressions with L = n, and later we will return to the case L = n + 1. If the expression
contains two values of lengths i and j (i < j < n), then it also contains a value of exactly length n in
which the bits i and j are free. If the expression contains a value of length j < n and two values of length
n, then in both, the bit j is free. Thus, we are interested in two types of expressions: consisting only of
values of length n, and consisting of one value of length n and several values of length j < n.

Expressions of the �rst type exist only if n|k. In k
n values, the bits from the �rst to the second-to-last can

be set in 2
k
n − 1 ways, thus the number of expressions of this type is (2

k
n − 1)n−1. This number is equal

to 0 for k = 0, 1 for k = n or odd n, and 3 otherwise.

For each j from 1 to n − 1, expressions of the second type exist only if j|(k − n) and k > n. In a value
of length n, the j-th bit is free. In 1 + k−n

j values, the bits from the �rst to the k − 1-th can be set in

2
1+ k−n

j − 1 ways, and the long value can be placed 1 + k−n
j ways between the short ones. Multiplying

2, (2
1+ k−n

j − 1)k−1 and 1 + k−n
j , we get 2 if k − n is divisible by 2j, otherwise 0. Thus, the number of

expressions of the second type is 0 if k − n is odd, otherwise, it is twice the number of divisors of k−n
2

that are less than n, which can be calculated in O(
√
k − n). Let's denote the total number of expressions

of the �rst and second types as t(k, n) and add this to the answer.

Let's return to the case L = n+ 1. Let i be the position at which the long value starts, then the number
of such expressions is equal to

∑k−n
i=1 f(i−1)g(k− i, n), where f(x) is the number of expressions of length

x with at most one free bit if all bits below the most signi�cant are considered free; g(x, n) is the number
of expressions of length x+ 1, where the �rst value has length n+ 1, and the rest are no longer than n.
Let's consider g(x, n). The case x = n is trivial, g(n, n) = 1, let's study the cases x > n.

If the �rst value looks like 100...00, then the number of such expressions is equal to t(x− n, n).

If the �rst value has the n-th bit, then similarly to the calculation of t(k, n), we add (2
x
n − 1)n−1 if x = 0

mod n, and 2 for each divisor of the number x− n (not x−n
2 , because the long value has only one way to

be placed) that is less than n.

If the �rst value has the j-th bit, but not the bits from j + 1 to n, then similarly to the calculation of
t(k, n), we add 2 if x−2n

2 is divisible by j; in this case, x− 2n = 0 is allowed; in other words, we add 2 for
each divisor of x−2n

2 that is less than n.

We get that g(x, n) consists of the following summands:

� (2
x−n
n − 1)n−1 if n|x;

� 2(n− 1) if x = 2n;

� (2
x
n − 1)n−1 if n|x;

� 2 ·#{d ∈ N|0 < d < n ∧ d|(x− n)};

It is also possible to add the �rst and third terms:

(2
x−n
n − 1)n−1 + (2

x
n − 1)n−1 =

{
1n−1 + 3n−1 = 2 · (n%2), if x = 2n

3n−1 + 3n−1 = 2, if x > 2n ∧ n|x

Calculating f(x) is not di�cult: either the expression consists of x ones, or of x − 2 ones and 10 or 11,
which can be placed in x− 1 ways. Thus, f(x) = max(2x− 1, 1), which is 1 for x = 0 and odd x, and 3
otherwise. It can also be noticed that g(k − i, n) is even if k − i > n, so for i < k − n, it doesn't matter
whether f(i− 1) = 1 or f(i− 1) = 3.

Page 2 of 8

Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

Let's consider how to calculate
∑k−n−1

x=1 g(k − x, n) =
∑k−1

x=n+1 g(x, n) (the term equal to
f(k−n−1) ·g(n, n) = f(k−n−1) should be calculated separately). Simplifying the �rst and third terms,
it is easy to sum them for all x.

Let's calculate
∑k−1

x=n+1 2 ·#{d ∈ N|0 < d < n ∧ d|(x− n)}:

k−1∑
x=n+1

2·#{d ∈ N|0 < d < n∧d|(x−n)} = 2·#{(d ∈ [1;n), x ∈ [n+1; k−1])|x ≡ nmod d} = 2

n−1∑
d=1

⌊
k − n− 1

d

⌋

This sum is calculated by a known algorithm in O(
√
k − n). To get the �nal answer, we need to sum the

terms calculated at di�erent stages of the solution.

Problem D. Blind Gauss
How to �nd a matrix with an odd determinant:

It's equivalent to �nding a nondegenerate matrix in Z2 with the required number of 1s in each row. Btw,
at this point, it's obvious for which cases the answer is -1, when there are at least two ai equal to n, or
when all the ai are even.

Assuming the answer exists, generate each row randomly until it's linearly independent of previously
generated rows. Oh, and if you have ai = n in the input, then generate that row before others.

How to get from an odd determinant to 1:

You have a matrix of 0 and 1 with the required number of 1s in each row. Run Gaussian elimination (in
Z2) to get a triangular matrix.

Go back to Z and run the steps of the performed elimination in the reversed order. You'll get a matrix
with the required number of odd numbers and its determinant is 1 or -1. In the latter case, just swap any
two columns.

Problem E. Eternal Masters
Let's assume

∑
ri < L+

∑
wi, otherwise Red easily wins by dumping all their cards. Now, let's assume

Red is able to win. Let's observe the �nal game state immediately after Red's victory. Obviously,

� there are White's cards in the stack,

� there is the same amount of Red's cards in the stack,

� the total value of White's cards in the stack is greater than the total value of Red's cards in the
stack.

Moreover, ∑
ri /∈stack

ri −
∑

wi /∈stack

wi ≥ Linitial.

Note the current stack content, and let's go back in time to every moment when exactly that content had
appeared. At each of those times, especially at the �rst one, the same inequality did hold, and Red could
easily win by dumping all their cards. Thus, this inequality is a necessary and su�cient condition for Red
to be able to win.

Let's denote ∑
ri /∈stack

ri −
∑

wi /∈stack

wi

as D. Red has to play towards maximizing D, and White has to play towards minimizing it. However, for
both players, any action leads towards the opposite. If Red plays a card ri, then D is decreased by ri; if

Page 3 of 8

Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

Red passes, then D is decreased by the value of the top White's card on the stack. The same is true for
White, but their actions cause an increase instead of a decrease.

Summing up, the optimal game goes as follows:

1. When the stack is empty, Red plays their smallest card. (or loses if they don't have one).

2. If White has a card with a smaller value than the top Red's card on the stack, they play it, and
Red passes. goto 2.

3. Else if White is able to pass, White passes. goto 1.

4. Else if White has no cards, White loses.

5. Else, White has to play a card with a value greater than the top Red's card on the stack. At this
point, we can forget these two cards exist, as for Red it's never pro�table to pass with these cards
on top. goto 1.

This can be easily simulated to select the winner. Also, it's easy to adapt this strategy in case the interactor
plays unoptimally.

Problem F. Grand Prix of Array Count
Obviouisly, all the values a2, a3, . . . , an should be equal to each other.

If n is odd, then selecting two values a1 and an forces us to set amiddle to their gcd, thus the answer is k2.

If n is even, then after selecting amiddle we have k/amiddle options to choose a1 and the same amount

of options to choose an, thus the answer is
∑k

i=1

(
k

i

)2

. It can be calculated in O(
√
k) with the famous

algorithm.

Problem G. 1 :eye: > 100 :ear:
First, we will discuss the algorithm to solve for any two nonconvex polygons in general, then we will talk
about optimizing it for our input.

Rotate the input by a random angle to get rid of vertical edges.

The Minkowski sum of two polygons is the same as the Minkowski sum of their boundaries (that's not
always true, but in this problem it is true due to the �special� generation). Thus the required area is the
area of the union of nm parallelograms. These parallelograms can intersect in (nm)2 points. Let f(x)
be the intersection of that union with the vertical line at x. Thus the area of the union is

∫∞
−∞ f(x) dx.

f(x) is a piecewise linear function and it changes its �rst derivative at most (nm)2 times. f(x) can be
calculated in O(nm log nm) by intersecting that vertical line with every parallelogram and sorting the
intersection points. This way we can also �nd the derivatives. So the area of the union can be found in
O(n3m3 log nm).

For our input, we make a few assumptions:

� Since the initial points generation picks the points uniformly, in both 1000-gons, there are enough
points near the edges of the [0; 105] × [0; 105] square. Therefore, the union of parallelograms looks
like a square [0; 2 · 105]× [0; 2 · 105] with �broken� edges, and its area is somewhere between 3.80e10
and 3.99e10;

� In practice, the square [20000; 180000] × [20000; 180000] is fully covered with the parallelograms;
we can remove all the parallelograms fully covered by this square, thus reducing the amount of
parallelograms from 106 to somewhere between 40000 and 60000.

Page 4 of 8

Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

� In practice, there are around �ve to six hundred x coordinates where f(x) changes its �rst derivative.
These vertices can be detected with this combination of binary search and Newton's method:

We are calculating
∫ R
L f(x) dx for some L,R.

If f ′(L) = f ′(R) and f(R) = f(L) + f ′(L) · (R − L), then we add the area of that trapezoid between L
and R to the answer. Well, there can be some outliers between L and R with di�erent derivatives, but in
practice, they are rare and insigni�cant, so ignoring them keeps us inside the 10−4 relative error.

If f ′(L) = f ′(R) and f(R) ̸= f(L) + f ′(L) · (R − L), proceed to the calculation of the integrals at the
segments [L; (L+R)/2] and [(L+R)/2;R].

If f ′(L) ̸= f ′(R), then �nd the x-coordinate where these tangents cross, denote it as M .

If M ≤ L, or M ≥ R, or f(M) ̸= f(L) + f ′(L) · (M − L), proceed to the calculation of the integrals at
the segments [L; (L+R)/2] and [(L+R)/2;R].

If L < M < R and f(M) = f(L) + f ′(L) · (M − L):

If f ′(L) = f ′(M − eps), f ′(M + eps) = f ′(R), then we have found a vertex and can add the area of two
trapezoids to the answer. Again, ignore the outliers.

If f ′(L) = f ′(M − eps) and f ′(M + eps) ̸= f ′(R) or f ′(L) ̸= f ′(M − eps) and f ′(M + eps) = f ′(R), then
add a trapezoid area [again, ignore the outliers] and keep calculating the integral on the other segment.

If f ′(L) = f ′(M + eps) and f ′(M − eps) = f ′(R), then we found a vertex, proceed to the calculation at
the segments [L;M − eps] and [M + eps;R], and add the areas of the small trapezoids.

In practice, this algorithm causes 2000− 3000 iterations.

Problem H. Don't Try This at Home
Compress all the values to the range [1;m], where m is the amount of di�erent values in the array.

In the most generic case, applying the function f is implemented like this:

1. iterate over the indexes from right to left;

2. if the current value is less than m:

3. increase the current value by 1;

4. erase all the values to the right from it;

5. note all the initial values that are missing right now;

6. if their amount is greater than the number of the erased spots, goto 1;

7. else, �ll the erased spots in the tail with the missing values in the increasing order, and �ll the
remaining erased spots with 1. break.

As long as the array contains a non-empty permutation of unique elements at its tail, and it's not sorted
in the decreasing order, applying the function f to this array causes this permutation to change to the
lexicographically next permutation, and the elements outside of it remain the same. Thus, if there is such
a permutation at the array's tail, �nd the amount of permutations that are lexicographically greater than
this one, add this value to the answer, and sort it in the decreasing order.

If that permutation is empty, or sorted in a decreasing order, then applying the function f causes the
value directly to the left from that permutation to be increased by 1, and that permutation is sorted in
the increasing order again. Thus you have to simulate increasing that value to the left until you get a
required array, while adding a factorial each time. In at most 2n simulations, you'll �nd a required array.

You have to think of all the corner cases to be able to perform a simulation in O(1). That includes these
corner cases: the value to the left is equal to 1, to m, or to some value in the tail permutation minus one.

Page 5 of 8

Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

However, if that value is equal to m, you may perform that simulation in O(n), as this case appears at
most once.

Problem I. Try This at Home
Compress the values to the range [0; base), where base is the amount of di�erent values in the array.

Obviously, as long as array a contains each value at least twice, then applying function f is equivalent
to adding 1 in base base. Thus, we will �nd the next array that doesn't contain each initial value at
least twice, and we will subract one array from another in base base. The only exception is when all the
maximum values are located in the tail of the array, but in this case, applying f to it immediately gives
us the required result.

To �nd the next array that doesn't contain each initial value at least twice, �nd the latest second entry
among all elements, let it be at the index pos. Obviously, it has to be changed, so set all the values after
pos to base− 1 and add 1 in base base. Repeat until you get the required array. You have to think of all
the corner cases to be able to repeat this operation in O(1).

Problem J. Pizza Restaurant
1) Case |sx| ≥ k · |xy|: In that case, sx = k · reversed sy + some palindrome. So, for each string in the
input as sx, for each its pre�x, if the reversed pre�x exists in the input, try to concatenate that pre�x
with itself as long as the concatenation keeps being sx pre�x, and at each step, check that the remaining
su�x is a palindrome.

2) Case |sx| < k · |sy|: There are two subcases:

� there is only one acceptable k, and it's equal to ceil(|sx|/|sy|), (for example, abccab ccba ccba;

� each integer k starting from 1 is acceptable

We will check if it's possible with k = 1, as it covers both the second subcase and the �rst one if |sx| < |sy|.
If |sx| ≥ |sy|, then k = 1 was already covered by the �rst case. If |sx| < |sy|, then iterate over input strings
as sy, for each its pre�x, if it's a palindrome and the reversed remaining su�x is in the input, we found
it.

The only thing left is to check the subcase |sx| > |sy| and k = ceil(|sx|/|sy|). For each string in the input
as sx, for each its pre�x, if the reversed pre�x exists in the input, check if s + reversed pre�x k times is
a palindrome (use hashes), where k = ceil(|s|/|prefix|).

Problem K. Spoiler

For any f1, k the sequence f is always interpolated as fn =
k

2
n2 + bn or

k + 1

2
n2 + bn for some �xed

integer b starting with some index.

Proof for even k.

De�ne bn:

bn =
fn − kn2

2

n

Then:

bn+1 =
fn+1 − k(n+1)2

2

n+ 1
=

k(n+ 1) +
⌈

fn
n+1

⌉
· (n+ 1)− k(n+1)2

2

n+ 1
=

Page 6 of 8

Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

=

k(n+ 1) +

⌈
kn2

2
+bnn

n+1

⌉
· (n+ 1)− k(n+1)2

2

n+ 1
= k +

⌈
kn2

2 + bnn

n+ 1

⌉
− k(n+ 1)

2
=

=

⌈
kn2

2 + bnn

n+ 1

⌉
− k(n− 1)

2
=

⌈
kn2

2 − k(n2−1)
2 + bnn

n+ 1

⌉
=

⌈
k
2 + bnn

n+ 1

⌉
=

⌈
k
2 − bn

n+ 1

⌉
+ bn.

If bn > n+ k
2 , then −n− 1 ≥ k

2 − bn, so

⌈
k
2
−bn
n+1

⌉
< 0, and bn+1 < bn.

If bn < k
2 , then

k
2 − bn > 0, so

⌈
k
2
−bn
n+1

⌉
> 0, and bn+1 > bn.

If n+ k
2 ≥ bn ≥ k

2 , then −n− 1 < k
2 − bn ≤ 0, so

⌈
k
2
−bn
n+1

⌉
= 0, and bn+1 = bn

Therefore, the sequence of bn always stabilizes at some constant, and the possible interpolations are

fn =
k

2
n2 + (

k

2
+ m)n, fn =

k

2
n2 + (

k

2
+ m − 1)n, or fn =

k

2
(n2 + n), where m is the interpolation

beginning index.

Proof for odd k.

De�ne bn:

bn =
fn − (k+1)n2

2

n

Then:

bn+1 =
fn+1 − (k+1)(n+1)2

2

n+ 1
=

k(n+ 1) +
⌈

fn
n+1

⌉
· (n+ 1)− (k+1)(n+1)2

2

n+ 1
=

=

k(n+ 1) +

⌈
(k+1)n2

2
+bnn

n+1

⌉
· (n+ 1)− (k+1)(n+1)2

2

n+ 1
= k +

⌈
(k+1)n2

2 + bnn

n+ 1

⌉
− (k + 1)(n+ 1)

2
=

=

⌈
(k+1)n2

2 + bnn

n+ 1

⌉
− (k + 1)(n− 1)

2
− 1 =

⌈
(k+1)n2

2 − (k+1)(n2−1)
2 + bnn

n+ 1

⌉
− 1 =

⌈
k+1
2 + bnn

n+ 1

⌉
− 1 =

=

⌈
k+1
2 − bn

n+ 1

⌉
+ bn − 1.

If bn > k−1
2 , then 0 ≥ k+1

2 − bn, so

⌈
k+1
2

−bn
n+1

⌉
< 1, and bn+1 < bn.

If bn < k−1
2 − n, then k+1

2 − bn > n+ 1, so

⌈
k+1
2

−bn
n+1

⌉
> 1, and bn+1 > bn.

If k−1
2 ≥ bn ≥ k−1

2 − n, then 0 < k+1
2 − bn ≤ n+ 1, so

⌈
k+1
2

−bn
n+1

⌉
= 1, and bn+1 = bn

Similarly to the case with an even k, the sequence of bn always stabilizes at some constant, and the possible

interpolations are fn =
k + 1

2
n2+(

k − 1

2
−m)n, fn =

k + 1

2
n2+(

k

2
−m+1)n, or fn =

k + 1

2
n2+

k − 1

2
n,

where m is the interpolation beginning index.

Page 7 of 8

Ukrainian Programming Cup 4, 22/06/2025
Contest 6, Division 1

It can be also proven the interpolation beginning index does not exceed 2 · 105 under the conditions on
f1, k given in the statements. Thus the solution is to iterate over all the divisors of x smaller than 2 · 105,
try to get k from each of six equations, and if it is integer, try to �nd the �tting f1 with the binary search:
the bigger is |f1 − k|, the bigger the interpolation beginning index is.

Page 8 of 8

