
Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

Problem A. Building Marble Tracks
Divide the line segments in the input into blocks of size

√
n. We will add these blocks one by one to the

solution set S. The general plan to add a new block of segments T is:

1. Filter out segments in T that intersect with some segment already in S. This can be done using a
modi�ed version of the Bentley-Ottmann algorithm in O(n log(n)) time.

2. Perform pairwise intersection tests between the remaining segments in T . Because there are at most√
n elements in T , this can be done trivially in O(n) time.

3. Add all remaining line segments of T to the solution set S. This can be done trivially in O(
√
n)

time.

The �ltering in the �rst step uses a linear sweep over the union of line segments already in the solution and
the line segments in the new block. For this step, we modify the Bentley-Ottmann algorithm. The next
paragraph describes this algorithm, you can skip it if you're already familiar with the Bentley-Ottmann
algorithm.

The goal of the general Bentley-Ottmann algorithm is to �nd the intersection between any two line
segments in a set of line segments. It performs a linear sweep over the 2D plane. The algorithm maintains
all line segments that are currently intersecting the sweepline in the order that they do intersect it in
(e.g. from bottom to top for a sweepline going left to right). To do so, there are three kinds of events:
adding a line segment at its start, removing it at its end, and swapping the position of two line segments
at their intersection. Because not all intersections can be calculated in advance, a line segment checks for
the next intersection with the adjacent line segments in the sweep set when it is added or swapped. When
a line segment is removed, the two line segments were next to it are now neighbors and are checked for
their next intersection as well. These intersections are then added to a priority queue which maintains all
events.

This algorithm O((n+ s) log(n)) time, where s is the number of intersections between line segments. To
have the �rst step run in O(n log(n)) time, it is left to show that s ∈ O(n):

� Intersections between line segments in the solution set:
By the requirement of the task, these do not exist.

� Intersections between line segments in the new block:
These line segments may intersect pairwise. However, there are only

√
n line segments in the block

and therefore only O(n) intersections.

� Intersections between line segments of di�erent sets:
These also may intersect pairwise for a total of O(n3/2) intersections. This can be reduced to
O(

√
n) by simply removing the line segment from the new block once the �rst intersection of this

kind is found. This results in each line segment of the new block having at most one of this kind
of intersection. Remember, we only want to know for each line segment in the block if it intersects
some line segment in the solution set, not necessarily all intersections.

The dominating time factor for one block is therefore �ltering the line segments of the new block with
line segments already in set. Because there are

√
n blocks, the algorithm runs in O(n3/2 log(n)) time.

Problem B. Build Well
First, we want to solve a simpli�ed version of the problem: given some bricks is it possible to build one
row. This problem is also known as the coin-change problem and can be solved in O(w·n

64) with bitsets or
in O(w · log(w)2) with �t (O(w · log(w)) is also achievable). Surprisingly, both of these approaches are
fast enough.

Page 1 of 8

Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

Now we can notice that if a solution that avoids bricks of length 1 exists, we are done. If such a solution
does not exist and no bricks of length 1 are available, we are also done.

At this point, we can assume that blocks of length 1 are available. Now we �nd a solution for both rows
simultaneously and we restrict ourselves to a solution where the second row has an o�set of one to the
�rst row. To do this we create gadget blocks that span two rows and have the following properties:

� the gadget has the same length in both rows

� the second row is o�set by 1

� the gadget creates no gaps in itself

� the �rst row does not start with a 1 block and the second row does not end with a 1 block i.e. any
pair of gadgets can be concatenated without creating gaps.

� a solution to the original problem exists if and only if a single row solution with the gadgets blocks
exists.

We can now observe that it is su�cient to create minimal gadget blocks i.e. those that use only one non 1
block. For each block wi of the original problem, we create wi−2 gadget blocks where the �rst row is a wi

block followed by some 1 blocks and the second row is some 1 blocks followed by a single wi block. With
these gadget blocks we can again solve the coin-change problem and check if it is possible to combine
gadgets to a total length w, if yes this is also a solution to the original problem, if no there is no solution.

The only problem remaining is: how can we create all those gadget blocks? For this, we observe that a
block of width w > 1 results in the gadget blocks of length w, ..., w− 2. Therefore, we can use a di�erence
array/pre�x sums to �nd all lengths for which we can build a gadget block in O(w).

There also exist other � more greedy � solutions. of the original input

Problem C. Centrifuge
Lets �rst calculate the answer for one leaf l.

First, we root the tree at vertex l. Then we do a tree dp, where dp[v] represents the expected liquid moving
upwards from below vertex v towards its parent.

dp[v] =

∑
u∈U dp[u]

max(1, deg[v]− 1)
+

a[v]

max(1, deg[v]− 1)
· size[v]− 1

n
+

a[v]

deg[v]
· 1
n

Where U are the children of vertex v, deg[v] is the degree of vertex v, and size[u] is the subtree size of u.

The sum has 3 parts: the liquid from below u, the liquid from u if the chosen center is below u, and the
liquid from u if the chosen center is u. For the root, the last term needs to be subtracted again since, if
it is chosen as center, the liquid will all �ow downwards (except for n = 1).

To calculate the solution for all leaves, tree rerooting is needed.

Watch out as the initial water in each vertex could be larger than the modulo (especially for n = 1).

Problem D. In�nity Triples
Lemma: (n, a, b) is an in�nity triple i� b is coprime to n

gcd(a,n)

Proof : The triple (n, a, b) is an in�nity triple i� the equation

k−1∑
j=0

a · bj = a · b
k − 1

b− 1
≡ 0 (mod n)

Page 2 of 8

Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

has in�nitely many positive integer solutions k. Now, we want to get rid of the factor a on the left side.
Let g = gcd(n, a). Then, the above is equivalent to

a

g
· b

k − 1

b− 1
≡ 0 (mod n

g)

Since a
g and n

g are coprime, we can multiply both sides by (ag)
−1. Multiplying both sides by b− 1, we get

the equivalent congruence
bk − 1 ≡ 0 (mod ñ)

where ñ = (b−1)ng . If b and ñ are not coprime, the equation has no solution. Otherwise, there are in�nitely
many solutions (one way to see this is Euler's theorem, every multiple of φ(ñ) is a solution). Thus, (n, a, b)
is an in�nity triple i�

1 = gcd

(
b, (b− 1)

n

g

)
= gcd

(
b,

n

gcd(a, n)

)
We know three solutions for enumerating the triples with the above characterization:

Solution 1:

� Fix b = pe11 · . . . · peℓℓ and iterate it over all values ≤ m.

� Iterate over all values s = pf11 · . . . · pfℓℓ ≤ b which only contain prime factors from p1, . . . , pℓ. We
interpret s as the part of n which contains only prime factors of b.

� Count the number of a, n such that

1. s|a and a < b

2. s|n and n
s is coprime to b

The number of a is simply ⌊ b−1
s ⌋ and the number of n can be computed using PIE in O(2ℓ).

Solution 2:

� Let xd denote the number of triples (n, a, b) with 1 ≤ n ≤ m, 1 ≤ a < b ≤ m and gcd(b, n
gcd(a,n)) = d.

� Then, xd = yd −
∑⌊m/d⌋

k=2 xdk where yd is the number of triples with d | gcd(b, n
gcd(a,n)).

� A triple is only counted by yd when d | n. So let's iterate over all pairs d | n.

� A value a is valid i� d | n
gcd(a,n) . If p is a prime divisor of d and pe is its highest power dividing n,

then the condition on a implies pe+1 ∤ a.

� As in solution 1, we can use PIE to count the number of valid a, b. To do this, we need to be able
to compute the number of a, b such that t | a, d | b, a < b for some t e�ciently. To do this, note
that there are ⌊md ⌋⌊

m
t ⌋ pairs without the condition a < b. Let's subtract the bad pairs with a ≥ b

to obtain ⌊m
d

⌋ ⌊m
t

⌋
−

⌊m/t⌋∑
k=1

⌊
kt

d

⌋
It is a well known problem to compute this in logarithmic time. Two possible ways to do it are:

� Find the convex hull of the points under the line using continued fractions and apply Pick's
theorem.

� A simpler solution: https://codeforces.com/blog/entry/65500?#comment-496162

Solution 3:

Page 3 of 8

Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

� Fix n and iterate it over all values ≤ m.

� Iterate over all subsets S of prime factor of n. Those will be the primes which n and b have in
common.

� Use PIE to calculate the number of (a, b) with a < b such that b shares exactly the prime factors of
S with n. To calculate this, it is again necessary to calculate a sum of �oors e�ciently, similarly to
solution 2.

For the solutions (in particular the �rst), it is di�cult to estimate the asymptotic time complexity because
it involves sums of functions depending on the distribution of primes. The easiest way to verify that the
solutions are indeed fast enough is to implement them or to estimate the number of operations using a
simple program.

Problem E. Taxi
Let T be the given tree. We want to �nd the shortest path on the graph G′ where edge (u, v) has weight
au + bu · d(u, v) where d(u, v) is the distance of u and v in T . This graph has too many edges to do this
naively.

To optimize this, we use the following properties:

Let's look at another simpler version of this problem. Imagine there are di�erent options for types of
taxis at vertex 1 and no taxis at any other node. Each taxi's cost function can be represented as a linear
function. Given the distance to another vertex (i.e. with LCA), this cost can be calculated e�ciently using
the convex hull trick.

Going back to the original problem, we can take advantage of some useful properties of the centroid
decomposition trees. Let T ′ denote the centroid decomposition tree of T . For any two vertices u and v in
T , either v is a descendant of u in T ′, or at least one of u's ancestors lies on the simple path between u
and v. Furthermore, the sum over all descendants and ancestors is bound by O(n · log n) as T ′ only has
depth O(log n).

Using the centroid decomposition tree, we could maintain the minimum cost from any vertex to all
ancestors without changing taxis. We save these costs in a convex hull datastructure at the ancestors. We
can now �nd the minimum cost from any already processed vertex to any new vertex without changing
taxi by just checking all of its descendants and ancestors.

We can also further simplify the problem by noticing that we will only change to taxis with lower cost
per distance traveled. In other words, for the minimum cost, the cost per distance traveled will be strictly
decreasing.

Using all of the properties above, we can start solving the actual problem. First, we iterate over the
vertices u in non increasing order of cost per distance. For this node, we add its cost function to all
ancestors (of T ′) including itself. The cost function will be the sum of the minimum cost to get to u and
the base cost av with slope bv. To �nd this minimum cost, one only needs to check the cost from already
processed descendants of v and through all ancestors.

Then we can iterate over all vertices and calculate the minimum distance by repeating this process. Adding
the cost function will not be necessary anymore as any taxi you might take will already have been added.

This process is correct since the �rst iteration calculates the minimum cost to all vertices u that do not
use any more expensive cost per distance traveled than bu. While this is not the actual minimum cost to
get to vertex u, this is the minimum if it would be optimal to change taxis at this vertex.

In the second iteration, the �nal answer will be calculated since all vertices where taxis will be changed
are already processed.

In total, the time complexity isO(n log2 n) because
∑

u(Number of ancestors and descendants) = O(n log n)
and the other data structure operations take O(log n) time.

Page 4 of 8

Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

Problem F. Periodic Sequence
We reduce a and b to their minimal periodic form. For example: abcabcabc → abc and
bcabca → bca. This can be done with kmp or z-function. For kmp, the cycle length is{
n− kmp[n− 1] , if that value divides n

n , else.

After this, we just need to check if a and b are (cyclically) equal. This can again be done with kmp or
z-function by checking if a′a′ contains b′.

Problem G. Scheduling
First of all, we want to perform coordinate compression because there is no constraint on the sum of the
maximum ri over all testcases. To do this, we construct a set S: iterate over all left endpoints ℓi and add
the three smallest x ≥ ℓi to S which are not already contained in S. Then, we replace [ℓi, ri) with [ℓ′i, r

′
i)

such that ℓ′i = #{x ∈ S : x < ℓi} and r′i = #{x ∈ S : x < ri}. We claim that it is equivalent to solve the
problem on those compressed intervals. To prove this, one can consider a schedule with lexicographically
minimal meeting times and verify that the meeting times are a subset of S. So from now on, we can
assume that ℓi, ri ∈ O(n).

Instead of directly constructing the schedule, we construct a set B of possible meeting times which contains
no consecutive points of time. We want to �nd B such that the intervals [ℓi, ri) can be matched to points
from B which are also in the interval. By using Hall's theorem, one can observe that B is valid i� the
following condition (*) is satis�ed:

For every integer interval I = [ℓ, r) we have: #(B ∩ I) ≥ #{[ℓi, ri) ⊆ I}

So for every interval I = [ℓ, r) there is a number f(I) = #{[ℓi, ri) ⊆ I} meaning that B must contain at
least f(I) elements of I. We also write d(ℓ, r) = d(I) = #(B ∩ I) − f(I) and thus we want to achieve
d(I) ≥ 0 for all I. If we can �nd such B, we can �nd the matching greedily in O(n log n). Otherwise, there
is no answer. So let's try to �nd a valid B.

De�ne the balance of interval I = [ℓ, r) as ϕ(I) = ϕ(ℓ, r) = (r − ℓ)− 2f(I).

� If there is an interval with ϕ(I) < −1, then there is no answer.

� If all intervals have balance ≥ 0, we can use B = {0, 2, 4, . . .}.

� If ϕ(ℓ, r) = −1. Every valid B must contain {ℓ, ℓ+2, ℓ+4, . . . , r−1}. Let F denote the set of values
which B is forced to contain because of this condition.

For e�cient implementation of the above observations, we can use a minimum segment tree with range
addition updates and iterate r. Then index ℓ of the segtree maintains ϕ(ℓ, r). For every r we do a minimum
query to check the above cases and if there is ϕ(ℓ, r) = −1, we �nd the smallest such ℓ. With this we can
recover F in O(n log n).

From now on, assume the last case because we are done in the �rst two cases. We need to add some
integers to F to construct a valid B. We claim that the following general strategy is optimal:

(i) For the smallest x ∈ F , add x−2, x−4, x−6 . . . and for the biggest x ∈ F add x+2, x+4, x+6, . . .

(ii) For two consecutive (in sorted order) elements p, q ∈ F , try to add as many elements as possible
which come from [p, q]. If q−p is even, this means that we add p+2, p+4, . . . , q−4, q−2. Otherwise
there is a gap g = g(p, q) and we add p+ 2, p+ 4, . . . , g − 2, g + 1, g + 3, . . . , q − 4, q − 2.

To prove this, one considers a solution which does not satisfy those conditions. If (ii) is not satis�ed, we
can �nd a structure like 001010100, where we represent B as bitset. We can change this to 010101010. It

Page 5 of 8

Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

is impossible that some interval satis�ed (*) before and violates it now, because it would have ϕ(I) ≤ −1.
For (i) we can use a similar argument.

Now, we assign values for the gaps from left to right. For g(p, q) we greedily choose the minimum value
such that d(I) ≥ 0 is satis�ed for all I = [ℓ, r) with r ≤ q. This can be implemented e�ciently using a
sweep line with a segment tree. We iterate r and index ℓ of the segment tree maintains d(ℓ, r). By using
a minimum query, we can check if it is allowed to have a gap at the current r.

The total time complexity is O(n log n)

Problem H. Mod Graph
For every query, we want to �nd a path through G that sets the counter of every vertex to zero. To do so,
we will construct a new graph G′ which has the same set of vertices and directed edges. This new graph
will have an Euler Cycle. Walking along the edge (u, v) in G′ then corresponds to walking along the edge
{u, v} in G.

For every undirected edge {u, v} in G, we add bu · bv of both the edges (u, v) and (u, v) to G′. The graph
G′ is now connected and every vertex has the same in and out degree, so an Euler Cycle exists. Because
every vertex v is entered deg(v) · bv times, this does not modify the values in the vertices. We can now
increment the value au and av of two adjacent vertices u and v by 1 by adding one copy of (u, v) and
(v, u) to G′.

Next, observe that for any vertex u, we can add bu to any vertex other than u. With the previously shown
gadget, this is clear for all neighbors v of u: Just add 1 to both u and v a total of bu times, and because
u's counter calculates modulo bu, its value remains unmodi�ed. Now assume that we already know how
to add bu to the counter of some vertex v, but not one of its neighbors w. We can add bu to aw by �rst
adding bu to both av and aw by just adding edges between v and w, and then repeatedly adding bu to v
until it is back at its original value.

With the ability to add bu to any other vertex v, we can see that all bu can be replaced by b := gcdv∈V (G) bv
because of Bezout's lemma.

We can make almost all vertices zero (except for one): Pick a vertex t, walk from s to t and build a
DFS-tree from it. When we �nish vertex u ̸= s with parent p, we add a value to the edge {p, u} such that
au = 0. After that, all vertices except t are guaranteed to be zero.

If G contains an odd cycle u1, . . . , uk, we can walk around the cycle once and then subtract 1 from every
edge of the form {u2i, u2i+1}. This means we added 1 to au1 and no other value changed. If we choose u1
as the root of our DFS-tree of the previous paragraph, this allows us to make all values zero. Thus, the
answer is always yes if the graph is not bipartite.

If the graph is bipartite, the following invariant is maintained during our walk modulo b: I = (R−B)+ c
where R is the sum of all au for red vertices u, B is the sum of all au for blue vertices u, and c is 0 if
we are currently on a red vertex in our walk and 1 otherwise. This way, when walking to a red vertex,
we increment R and decrement c, leaving I unmodi�ed. When walking to a blue vertex, we increment B
(which decrements I) and decrement c. This means that the value of I is only dependent on the starting
values of all counters. We can easily maintain I through every update query in O(1) time.

Remember that starting at vertex s increments as by 1, which modi�es I for this query only. You may
also choose not to make the last step in the Euler Cycle of G′, which would undo this increment.

Last, there is one exception to the bipartite case: If the graph has only one vertex, we cannot walk at all.
In this case, we just output YES if av + 1 = bv, and NO otherwise.

Problem I. In the Treetops
Before we get to more complex cases, note that an outerplanar graph with only one biconnected component
has a trivial Hamiltonpath by traversing along the outer face.

There are two conditions related to cut vertices this graph has to ful�ll:

Page 6 of 8

Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

� If the removal of any cut vertex results in three or more seperate components, there is no
Hamiltonpath. This is because every possible simple path starts in one of these components (or
the cut vertex) and ends in another (or the cut vertex) and can therefore never visit all three
components.

� If any biconnected component has three or more cut vertices, there is no Hamiltonpath. This has a
similar justi�cation to the condition above.

Therefore, the cut-vertex-block-tree has to be a path. This check requires the biconnected components,
which can be calculated in O(n) time. The biconnected components are also required for later steps.

The biconnected components forming the endpoints of this path may have any form, the Hamiltonpath
can be found the same way as in the trivial case where one endpoint is on the cut vertex. For all other
biconnected components, we now have to �nd a Hamiltonpath with a dedicated start- and endpoint. To
do so, �rst divide all edges into three sets:

� border edges: edges on the outer face.

� skip edges: non-border edges with both ends on the same (lower/upper) border

� swap edges: edges that are not border edges and not skip edges

Below is an example, where the left- and rightmost vertex are the cut vertices that are to be connected
by the Hamiltonpath:

border

skip

swap

Although the Hamiltonpath is not directed, it is helpful to think about building the path from the left to
the right cut vertex. Note that traversing a border edge in the opposite direction (i.e. right to left) makes
it impossible to reach the right cut vertex. Further, taking a skip edge forces one to traverse a border edge
in such a way, therefore we can not take any of them either.

On the remaining possible edges, �nd a path from the left to the right cut vertex that alternates between
taking a border and a swap edge. This can be done in O(n) if such a path exists. The Hamiltonpath can
be constructed from the alternating path by using the same swap edges and the complement of the border
edges. Because these two paths are complementary in some sense, the Hamiltonpath exists exactly if the
alternating path exists.

Alternatively, there is a solution using dynamic programming: We now consider partial Hamiltonpaths
starting at the left cut vertex that cover some pre�x of the upper vertices and some pre�x of the lower
vertices. Our states are now the last covered vertex on the top border, on the bottom border, and whether
our current endpoint is on the top or bottom border. The number of states is now quadratic, but it can
be reduced to linear by realizing that all states with a possible choice are ones where the vertex on the
upper and lower border are connected by an edge.

Problem J. Permutation Recovery
Let aij denote the entries of the matrix. For every aix = y, there is a corresponding entry ajy = x (because
the original matrix contains the inverse of every permutation).

We create a multi-graph G with an undirected edge {x, y} for each corresponding pair. Note that G may
contain self-loops.

Page 7 of 8

Ukrainian Programming Cup 4, 08/06/2025
Contest 5, Division 1

Every vertex has the even degree 2k, so we can �nd an Euler tour on each component of the graph. This
Euler tour assigns a direction to every edge such that every vertex has k outgoing and k incoming edge
endpoints.

For every vertex u, split it into uin and uout in an auxiliary bipartite graph G′. If the Euler tour directed
an edge from u to v, add the edge {uout, vin} to G′. Graph G′ is k regular, so it has a perfect matching
by a corollary of Hall's theorem. We can �nd this perfect matching in O(nk

√
n) with Hopcroft-Karp.

We create a permutation π where if uout is matched with vin, we set π(u) = v. For every i, remove one edge
{i, π(i)} from G, which leaves a (2k − 2) regular graph and repeat the same algorithm for the remaining
k − 1 permutations.

This leads to a O(k2n
√
n) solution.

Page 8 of 8

