A	С	D		G	Н		

IV Кубок України з програмування

Official Solutions Contest 3, div1 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Given a matrix
 - of size up to 50

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- Given a matrix
 - of size up to 50
- Color each element of matrix in one of two colors

- Given a matrix
 - of size up to 50
- Color each element of matrix in one of two colors
- You have up to 50 000 awards you can get
 - $x_1, x_2, y_1, y_2, c \text{ and } m$
 - You get an award *m* if submatrix (x_1, x_2, y_1, y_2) is colored in *c*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Given a matrix
 - of size up to 50
- Color each element of matrix in one of two colors
- You have up to 50 000 awards you can get
 - $x_1, x_2, y_1, y_2, c \text{ and } m$
 - You get an award *m* if submatrix (x_1, x_2, y_1, y_2) is colored in *c*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- There are also awards for each cell colored
 - These one can be converted to the same awards as before
 - One cell is also submatrix

- Given a matrix
 - of size up to 50
- Color each element of matrix in one of two colors
- You have up to 50 000 awards you can get
 - $x_1, x_2, y_1, y_2, c \text{ and } m$
 - You get an award *m* if submatrix (x_1, x_2, y_1, y_2) is colored in *c*

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- There are also awards for each cell colored
 - These one can be converted to the same awards as before
 - One cell is also submatrix
- Earn maximum amount of money

A ⊙●○○○○	B 00000	C 00	D 000	E 000	G 00	H 00		K 000
A. Life	e game							

• Dividing elements into two subsets reminds of $\langle S, T \rangle$ -cut

A	B	C	D	E	F	G	H	I	00	K
⊙●○○○○	00000	00	000	000	000	00	00	000	J	000
A. Life	e game									

- Dividing elements into two subsets reminds of $\langle S, T \rangle$ -cut
- Build a network, so that there is a bijection between $\langle S, T \rangle$ -cuts and different colorings

A	B	C	D	E	F	G	H	I)	К
⊙●○○○○	00000	00	000	000	000	00	00	000		000
A. Life	e game									

- ullet Dividing elements into two subsets reminds of $\langle S, T \rangle\text{-cut}$
- Build a network, so that there is a bijection between $\langle S, T \rangle$ -cuts and different colorings
 - Make cut value equal to corresponding amount of money

A	B	C	D	E	F	G	H	I	00	K
0●000	00000	00	000	000	000	00	00	000	J	000
A. Life	e game									

- $\bullet\,$ Dividing elements into two subsets reminds of $\langle S,\,T\rangle\text{-cut}$
- Build a network, so that there is a bijection between $\langle S, T \rangle$ -cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer

A 0●000	B 00000	С 00	D 000	E 000	G 00	H 00		K 000
A. Life	e game							

- ullet Dividing elements into two subsets reminds of $\langle S, T \rangle\text{-cut}$
- Build a network, so that there is a bijection between $\langle S, T \rangle$ -cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
 - Assume that we already earned all the money and have to return the money for non-satisfied awards

- Dividing elements into two subsets reminds of $\langle S, T
 angle$ -cut
- Build a network, so that there is a bijection between (S, T)-cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
 - Assume that we already earned all the money and have to return the money for non-satisfied awards
 - Minimize amount of money we have to return

Solution

- Dividing elements into two subsets reminds of $\langle S, T
 angle$ -cut
- Build a network, so that there is a bijection between (S, T)-cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
 - Assume that we already earned all the money and have to return the money for non-satisfied awards

(日) (四) (日) (日)

- Minimize amount of money we have to return
- Let this amount be the value of the cut

- Dividing elements into two subsets reminds of $\langle S, T
 angle$ -cut
- Build a network, so that there is a bijection between (S, T)-cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
 - Assume that we already earned all the money and have to return the money for non-satisfied awards
 - Minimize amount of money we have to return
 - Let this amount be the value of the cut
- Consider one award, let's say c = 0

Solution

- Dividing elements into two subsets reminds of $\langle S, T
 angle$ -cut
- Build a network, so that there is a bijection between (S, T)-cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
 - Assume that we already earned all the money and have to return the money for non-satisfied awards

(日) (四) (日) (日)

э

- Minimize amount of money we have to return
- Let this amount be the value of the cut
- Consider one award, let's say c = 0
 - Create one vertex v for this award

- Dividing elements into two subsets reminds of $\langle S, T
 angle$ -cut
- Build a network, so that there is a bijection between (S, T)-cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
 - Assume that we already earned all the money and have to return the money for non-satisfied awards
 - Minimize amount of money we have to return
 - Let this amount be the value of the cut
- Consider one award, let's say c = 0
 - Create one vertex v for this award
 - Add edges of $+\infty$ capacity from ν to vertices in its submatrix

A B C D E F G H I J K 0.000 A. Life game

- Dividing elements into two subsets reminds of $\langle S, T
 angle$ -cut
- Build a network, so that there is a bijection between (S, T)-cuts and different colorings
 - Make cut value equal to corresponding amount of money
- We can find minimum cut and we have to maximize answer
 - Assume that we already earned all the money and have to return the money for non-satisfied awards
 - Minimize amount of money we have to return
 - Let this amount be the value of the cut
- Consider one award, let's say c = 0
 - Create one vertex v for this award
 - Add edges of $+\infty$ capacity from ν to vertices in its submatrix
 - Add edge of m capacity from source to v

A 00●00	B 00000	C 00	D 000	E 000	G 00	H 00		K 000
A. Life	e game							

- Do for c = 1 in the same way
 - Create one vertex v for this award
 - Add edges of $+\infty$ capacity from vertices in its submatrix to v

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Add edge of *m* capacity from *v* to sink

A 00●00	B 00000	C 00	D 000	E 000	G 00	H 00		K 000
A. Lif	e game							

- Do for c = 1 in the same way
 - Create one vertex v for this award
 - Add edges of $+\infty$ capacity from vertices in its submatrix to v

ション ふゆ く 山 マ チャット しょうくしゃ

- Add edge of *m* capacity from *v* to sink
- One can see, that if award criterion is not satisfied, then *m*-valued edge is intersecting a cut

A 00●00	B 00000	C 00	D 000	E 000	G 00	H 00		K 000
A. Lif	e game							

- Do for c = 1 in the same way
 - Create one vertex v for this award
 - Add edges of $+\infty$ capacity from vertices in its submatrix to v
 - Add edge of *m* capacity from *v* to sink
- One can see, that if award criterion is not satisfied, then *m*-valued edge is intersecting a cut
- This will give up to $50^2 \cdot 50\,000$ edges and $50+50\,000$ vertices

うして ふゆう ふほう ふほう うらう

• Pretty much for maxflow algorithms

A 000●0	B 00000	С 00	D 000	E 000	F 000	G 00	H 00		K 000
A. Life	e game								

Optimizing

• Make 2D sparse table structure

A	B	С	D	E	F	G	H	I	00	K
000●0	00000	00	000	000	000	00	00	000	J	000
A. Life	e game									

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Optimizing

- Make 2D sparse table structure
 - Add vertex for every r, c, k_r , k_c
 - Submatrix $[r, r + 2^{k_r}) \times [c, c + 2^{k_c})$

A 000●0	B 00000	C 00	D 000	E 000	G 00	H 00		K 000
A. Lif	e game							

- Make 2D sparse table structure
 - Add vertex for every r, c, k_r , k_c
 - Submatrix $[r, r + 2^{k_r}) \times [c, c + 2^{k_c})$
- Don't add edges from every cell to an award
 - Add 4 edges from 4 submatrices of power-of-2 sizes to an award as in 2D sparse table

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

• We don't care if they overlap

A	B	С	D	E	F	G	H	I	J	K
000●0	00000	00	000	000	000	00	00	000		000
A. Life	e game									

- Make 2D sparse table structure
 - Add vertex for every r, c, k_r , k_c
 - Submatrix $[r, r + 2^{k_r}) \times [c, c + 2^{k_c})$
- Don't add edges from every cell to an award
 - Add 4 edges from 4 submatrices of power-of-2 sizes to an award as in 2D sparse table

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- We don't care if they overlap
- Add $+\infty$ edges between power-of-2 size submatrices
 - From big one to two times smaller ones

A	B	С	D	E	F	G	H	I	00	K
○○○○●	00000	00	000	000	000	00	00	000	J	000
A. Life	e game									

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Optimizing

- Make 2 such structures
 - One for outgoing edges
 - Another for incoming edges

A ○○○○●	B 00000	С 00	D 000	E 000	G 00	H 00		K 000
A. Life	e game							

- Make 2 such structures
 - One for outgoing edges
 - Another for incoming edges
- As it turns out, this optimization helps to get passed TL

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A ○○○○●	B 00000	С 00	D 000	E 000	G 00	H 00		K 000
A. Life	e game							

- Make 2 such structures
 - One for outgoing edges
 - Another for incoming edges
- As it turns out, this optimization helps to get passed TL
 - Fast algorithms like Dinitz or Preflow-push algorithms help

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

A 0000●	B 00000	C 00	D 000	E 000	G 00	H 00		K 000
A. Life	e game							

- Make 2 such structures
 - One for outgoing edges
 - Another for incoming edges
- As it turns out, this optimization helps to get passed TL
 - Fast algorithms like Dinitz or Preflow-push algorithms help

ション ふゆ く 山 マ チャット しょうくしゃ

- $\bullet\,$ Here we have about $2\cdot 50^2\cdot \log^2 50$ edges for sparse table
- $\bullet~5\cdot 50\,000$ edges for edges between awards and submatrices
- And $2 \cdot 50^2 \cdot \log^2 50 + 50\,000$ vertices

A 00000	B ●0000	C 00	D 000	E 000	G 00	H 00		K 000
B. Str	ing Qu	eries						

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- You are given a string s
 - Length up to 5000

A 00000	B ●0000	C 00	D 000	E 000	G 00	H 00		K 000
B. Str	ing Qu	eries						

- You are given a string s
 - Length up to 5000
- You are also given queries
 - Given L and R
 - Find number of different substrings in s(L, R)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

A 00000	B 0●000	C 00	D 000	E 000	G 00	H 00		K 000
B. Stri	ing Que	eries						

• Solution is similar to number of different colors in subtree of rooted tree problem

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L,R}$ number of substrings in s(L,R)

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L,R}$ number of substrings in s(L,R)
- Initialize $f_{i,j} = 0$ for all *i* and *j*

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L,R}$ number of substrings in s(L,R)
- Initialize $f_{i,j} = 0$ for all *i* and *j*
- Substring s(i,j) is inside all (x,y) for $x \leq i$ and $j \leq y$
 - For all $i \leqslant j$ add 1 to all $f_{x,y}$ such that $x \leqslant i$ and $j \leqslant y$

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L,R}$ number of substrings in s(L,R)
- Initialize $f_{i,j} = 0$ for all i and j
- Substring s(i,j) is inside all (x,y) for $x \leq i$ and $j \leq y$
 - For all $i \leqslant j$ add 1 to all $f_{x,y}$ such that $x \leqslant i$ and $j \leqslant y$
- Get all substrings equal to some t

Solution

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L,R}$ number of substrings in s(L,R)
- Initialize $f_{i,j} = 0$ for all i and j
- Substring s(i,j) is inside all (x,y) for $x \leq i$ and $j \leq y$
 - For all $i \leqslant j$ add 1 to all $f_{x,y}$ such that $x \leqslant i$ and $j \leqslant y$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

- Get all substrings equal to some t
 - $t = s(i_1, j_1) = s(i_2, j_2) = \dots = s(i_k, j_k)$ • $i_1 < i_2 < \dots < i_k$ • $j_1 - i_1 = j_2 - i_2 = \dots = j_k - i_k$
- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L,R}$ number of substrings in s(L,R)
- Initialize $f_{i,j} = 0$ for all i and j
- Substring s(i,j) is inside all (x,y) for $x \leq i$ and $j \leq y$
 - For all $i \leqslant j$ add 1 to all $f_{x,y}$ such that $x \leqslant i$ and $j \leqslant y$
- Get all substrings equal to some t
 - $t = s(i_1, j_1) = s(i_2, j_2) = \ldots = s(i_k, j_k)$ • $i_1 < i_2 < \cdots < i_k$ • $j_1 - i_1 = j_2 - i_2 = \cdots = j_k - i_k$ Subtract 1. So that for any k that $i_k < i_k$
 - Subtract 1 of all $f_{x,y}$ such that $x \leqslant i_e$ and $j_{e+1} \leqslant y$
 - for $1 \leqslant e < k$

- Solution is similar to number of different colors in subtree of rooted tree problem
- Build an array of $f_{L,R}$ number of substrings in s(L, R)
- Initialize $f_{i,j} = 0$ for all i and j
- Substring s(i,j) is inside all (x,y) for $x \leq i$ and $j \leq y$
 - $\bullet \ \, \text{For all} \ i\leqslant j \ \text{add} \ 1 \ \text{to all} \ f_{x,y} \ \text{such that} \ x\leqslant i \ \text{and} \ j\leqslant y$
- Get all substrings equal to some t
 - $t = s(i_1, j_1) = s(i_2, j_2) = \ldots = s(i_k, j_k)$ • $i_1 < i_2 < \cdots < i_k$ • $j_1 - i_1 = j_2 - i_2 = \cdots = j_k - i_k$
 - Subtract 1 of all $f_{x,y}$ such that $x \leq i_e$ and $j_{e+1} \leq y$ • for $1 \leq e < k$
- Then just answer all queries outputting $f_{L,R}$

A	B	C	D	E	F	G	H	I	J	K
00000	00●00	00	000	000	000	00	00	000	00	000
B. Str	ing Qu	eries								

◆□> <圖> < => < => < => <0 < <>

Why will it work?

• Consider some s(L, R)

A	B	C	D	E	F	G	H	I	J	K
00000	00●00	00	000	000	000	00	00	000	00	000
B. Str	ing Qu	eries								

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Why will it work?

- Consider some s(L, R)
- Suppose there are w copies of t in s(L, R)

A 00000	B 00●00	C 00	D 000	E 000	G 00	H 00		K 000
B. Str	ing Qu	eries						

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Why will it work?

- Consider some s(L, R)
- Suppose there are w copies of t in s(L, R)
- We added 1 for each of the copy, so it's +w

A 00000	B 00●00	C 00	D 000	E 000	G 00	H 00		K 000
B. Str	ing Qu	eries						

Why will it work?

- Consider some s(L, R)
- Suppose there are w copies of t in s(L, R)
- We added 1 for each of the copy, so it's +w
- For each neighbouring copies we subtracted 1, so it's -(w-1)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

A 00000	B 00●00	C 00	D 000	E 000	G 00	H 00		K 000
B. Stri	ing Que	eries						

Why will it work?

- Consider some s(L, R)
- Suppose there are w copies of t in s(L, R)
- We added 1 for each of the copy, so it's +w
- For each neighbouring copies we subtracted 1, so it's -(w-1)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

• So it's w - (w - 1) = +1 for each substring that is inside

A 00000	B 000●0	C 00	D 000	E 000	G 00	H 00		K 000
B. Str	ing Qu	eries						

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i

- Calculate LCP(i, j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If LCP(i,j) > d
 - We found substrings with lengths $d + 1 \dots LCP(i, j)$

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If *LCP*(*i*,*j*) > *d*
 - We found substrings with lengths $d + 1 \dots LCP(i, j)$
 - For each substring of length $d+1 \leqslant g \leqslant \textit{LCP}(i,j)$ subtract 1

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If *LCP*(*i*,*j*) > *d*
 - We found substrings with lengths $d + 1 \dots LCP(i, j)$
 - For each substring of length $d + 1 \leqslant g \leqslant LCP(i,j)$ subtract 1
 - Subtract 1 from $f_{x,y}$ such that $x \leqslant i$ and $j + g 1 \leqslant y$

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If *LCP*(*i*,*j*) > *d*
 - We found substrings with lengths $d + 1 \dots LCP(i, j)$
 - For each substring of length $d + 1 \leqslant g \leqslant LCP(i,j)$ subtract 1
 - Subtract 1 from $f_{x,y}$ such that $x \leqslant i$ and $j + g 1 \leqslant y$
- Partial sums will help iterating over g

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If *LCP*(*i*,*j*) > *d*
 - We found substrings with lengths $d + 1 \dots LCP(i, j)$
 - For each substring of length $d + 1 \leqslant g \leqslant LCP(i,j)$ subtract 1
 - Subtract 1 from $f_{x,y}$ such that $x \leqslant i$ and $j + g 1 \leqslant y$
- Partial sums will help iterating over g
- And 2D Partial sums will help adding $f_{x,y}$ for $x \leq i$ and $j \leq y$

- Calculate LCP(i,j)
 - Longest common prefix of s(i, |s|) and s(j, |s|)
- Fix *i* and iterate over *j*
- Find equal substrings to those, which start at i
- Maintain d the longest substring found so far
- If *LCP*(*i*,*j*) > *d*
 - We found substrings with lengths $d + 1 \dots LCP(i, j)$
 - For each substring of length $d + 1 \leqslant g \leqslant LCP(i,j)$ subtract 1
 - Subtract 1 from $f_{x,y}$ such that $x \leqslant i$ and $j + g 1 \leqslant y$
- Partial sums will help iterating over g
- And 2D Partial sums will help adding $f_{x,y}$ for $x \leq i$ and $j \leq y$
- Solution time and memory complexity is $O(|s|^2 + Q)$
 - *Q* the number of queries

A	В	С	D		G	н		K
	00000							
B. Str	ing Qu	eries						

• For every suffix build suffix data structure in linear time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A	В	С	D		G	н		K
	00000							
B. Str	ing Qu	eries						

• For every suffix build suffix data structure in linear time

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- Append single letter
 - Learn how the number of substrings changed

A	В	С	D		G	н		
00000	00000		000	000			000	000
B. Str	ing Qu	eries						

- For every suffix build suffix data structure in linear time
- Append single letter
 - Learn how the number of substrings changed
- For automaton it's += len[last] len[sufLink[last]]

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

A 00000	B 0000●	C 00	D 000	E 000	G 00	H 00		K 000
B. Str	ing Qu	eries						

- For every suffix build suffix data structure in linear time
- Append single letter
 - Learn how the number of substrings changed
- For automaton it's += len[last] len[sufLink[last]]

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

• Still $O(|s|^2)$ time and $O(|s|^2)$ memory solution

C. Cor	orimes								
A 00000	B 00000	C ●○	D 000	E 000	F 000	G 00	Н 00		К 000

• Given *n* up to 28

- Given *n* up to 28
- Find number of different permutations
 - Of length n
 - Every two consecutive elements are coprime

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

C. Co	primes								
A 00000	В 00000	C ⊙●	D 000	E 000	F 000	G 00	H 00		к 000

Solution

• For each x we are interested in the subset of $[1 \dots n]$, so that x is coprime to them

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

C. Co	primes								
A 00000	B 00000	C ⊙●	D 000	E 000	F 000	G 00	H 00		K 000

Solution

• For each x we are interested in the subset of $[1 \dots n]$, so that x is coprime to them

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

• Build equivalence classes on that criteria

Solution

- For each x we are interested in the subset of $[1 \dots n]$, so that x is coprime to them
- Build equivalence classes on that criteria
- Based on these equivalence classes count number of different multisets of classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• There are 1728000 of those

Solution

- For each x we are interested in the subset of $[1 \dots n]$, so that x is coprime to them
- Build equivalence classes on that criteria
- Based on these equivalence classes count number of different multisets of classes

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

- There are 1728000 of those
- Make dynamic programming

• You are given *n* white balls

- You are given *n* white balls
- In one turn you choose (I, r), so that $1 \leq l \leq r \leq n$ equiprobably

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

- You are given *n* white balls
- In one turn you choose (I, r), so that $1 \leq l \leq r \leq n$ equiprobably

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

• Color each ball x, such that $l \leq x \leq r$, to black

- You are given *n* white balls
- In one turn you choose (I, r), so that $1 \leq l \leq r \leq n$ equiprobably
- Color each ball x, such that $I \leq x \leq r$, to black
- What is the expected number of turns, so that every ball is colored?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Solution

• Answer is $\sum_{i=0}^{+\infty} p(i)$

• p(x) is the probability, that in x moves there exists a white ball

Solution

Answer is \$\sum_{i=0}^{+\infty} p(i)\$
\$p(x)\$ is the probability, that in \$x\$ moves there exists a white ball
How to calculate \$p(x)\$?

- Answer is $\sum_{i=0}^{+\infty} p(i)$
 - p(x) is the probability, that in x moves there exists a white ball
- How to calculate p(x)?
 - d_A is the probability to leave A white in x moves

- Answer is $\sum_{i=0}^{+\infty} p(i)$
 - p(x) is the probability, that in x moves there exists a white ball
- How to calculate p(x)?
 - d_A is the probability to leave A white in x moves
 - Choosing these intervals will color some subset of \overline{A}

- Answer is $\sum_{i=0}^{+\infty} p(i)$
 - p(x) is the probability, that in x moves there exists a white ball
- How to calculate p(x)?
 - d_A is the probability to leave A white in x moves
 - Choosing these intervals will color some subset of \overline{A}
 - Use inclusion-exclusion formula
- Answer is $\sum_{i=0}^{+\infty} p(i)$
 - p(x) is the probability, that in x moves there exists a white ball
- How to calculate p(x)?
 - d_A is the probability to leave A white in x moves
 - Choosing these intervals will color some subset of \overline{A}
 - Use inclusion-exclusion formula
 - Probability to color all balls in x moves $\sum_A d_A \cdot (-1)^{|A|}$

- Answer is $\sum_{i=0}^{+\infty} p(i)$
 - p(x) is the probability, that in x moves there exists a white ball
- How to calculate p(x)?
 - d_A is the probability to leave A white in x moves
 - Choosing these intervals will color some subset of \overline{A}
 - Use inclusion-exclusion formula
 - Probability to color all balls in x moves $\sum_{A} d_A \cdot (-1)^{|A|}$
 - c_A is the number of intervals that cover only balls from \overline{A}

A B C D E F G H I J K 00000 000 00 00 00 00 00 00 00 00 00 D. Colored Balls

- Answer is $\sum_{i=0}^{+\infty} p(i)$
 - p(x) is the probability, that in x moves there exists a white ball
- How to calculate p(x)?
 - d_A is the probability to leave A white in x moves
 - Choosing these intervals will color some subset of \overline{A}
 - Use inclusion-exclusion formula
 - Probability to color all balls in x moves $\sum_{A} d_A \cdot (-1)^{|A|}$
 - c_A is the number of intervals that cover only balls from \overline{A}

• Then
$$d_A = \left(\frac{c_A}{\binom{n+1}{2}} \right)$$

A B C D E F G H I J K 00000 000 00 00 00 00 00 00 00 00 000 D. Colored Balls

- Answer is $\sum_{i=0}^{+\infty} p(i)$
 - p(x) is the probability, that in x moves there exists a white ball
- How to calculate p(x)?
 - d_A is the probability to leave A white in x moves
 - Choosing these intervals will color some subset of \overline{A}
 - Use inclusion-exclusion formula
 - Probability to color all balls in x moves $\sum_{A} d_A \cdot (-1)^{|A|}$
 - c_A is the number of intervals that cover only balls from \overline{A}

• Then
$$d_A = \left(\frac{c_A}{\binom{n+1}{2}}\right)$$

• So answer is
$$\sum_{i=0}^{+\infty} \left(1 - \sum_{A} (-1)^{|A|} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i \right)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Solution

• We know that $d_{arnothing}=1$, so:

• Answer is:
$$\sum_{i=0}^{+\infty} \sum_{A \neq \emptyset} (-1)^{|A|} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i$$

• Change the order
$$\sum_{A \neq \varnothing} (-1)^{|A|} \sum_{i=0}^{+\infty} \left(\frac{c_A}{\binom{n+1}{2}} \right)^{i}$$

Solution

- We know that $d_{arnothing}=1$, so:
 - Answer is: $\sum_{i=0}^{+\infty} \sum_{A \neq \varnothing} (-1)^{|A|} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i$
- Change the order $\sum_{A \neq \varnothing} (-1)^{|A|} \sum_{i=0}^{+\infty} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i$

• It's 2ⁿ geometric series sums

Solution

- We know that $d_{arnothing}=1$, so:
 - Answer is: $\sum_{i=0}^{+\infty} \sum_{A \neq \varnothing} (-1)^{|A|} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i$
- Change the order $\sum_{A \neq \varnothing} (-1)^{|A|} \sum_{i=0}^{+\infty} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i$

• It's 2ⁿ geometric series sums

• For every c_A and $(|A| \mod 2)$ calculate the number of such A

Solution

- We know that $d_{arnothing}=1$, so:
 - Answer is: $\sum_{i=0}^{+\infty} \sum_{A \neq \varnothing} (-1)^{|A|} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i$
- Change the order $\sum_{A \neq \varnothing} (-1)^{|A|} \sum_{i=0}^{+\infty} \left(\frac{c_A}{\binom{n+1}{2}} \right)^i$

• It's 2ⁿ geometric series sums

- For every c_A and $(|A| \mod 2)$ calculate the number of such A
- As an exercise come up with dynamic programming polynomial solution to do that

• You are given a tree

・ロト ・聞ト ・ヨト ・ヨト

₹ 9Q@

- You are given a tree
 - Number of vertices is at most 50 000

・ロト ・個ト ・ヨト ・ヨト

₹ 9Q@

- You are given a tree
 - Number of vertices is at most 50 000
- Calculate for each vertex v:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

- You are given a tree
 - Number of vertices is at most 50 000
- Calculate for each vertex v:

•
$$\sum_{u} d_{v,u}^k$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- You are given a tree
 - Number of vertices is at most 50 000
- Calculate for each vertex v:

•
$$\sum_{\nu} d_{\nu,\nu}^k$$

• $d_{x,y}$ is the distance from v to u

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- You are given a tree
 - Number of vertices is at most 50 000
- Calculate for each vertex v:

•
$$\sum_{u} d_{v,u}^k$$

- $d_{x,y}$ is the distance from v to u
- k is up to 50

Solution

• Formula using Stirling numbers of second kind:

•
$$d^k = \sum_{i=0}^k S(k,i) \cdot d \cdot (d-1) \cdot \cdots \cdot (d-i+1)$$

•
$$d^k = \sum_{i=0}^{\kappa} S(k,i) \cdot {d \choose i} \cdot i!$$

- S(k, i) is the Stirling number of second kind
 - The number of ways to color k element set into i colors

Solution

• Formula using Stirling numbers of second kind:

•
$$d^k = \sum_{i=0}^k S(k,i) \cdot d \cdot (d-1) \cdot \cdots \cdot (d-i+1)$$

•
$$d^k = \sum_{i=0}^{k} S(k,i) \cdot {d \choose i} \cdot i!$$

- S(k, i) is the Stirling number of second kind
 - The number of ways to color k element set into i colors
- So for every vertex v calculate array a:

•
$$a_i = \sum_u {d_{v,u} \choose i}$$

A B C D E F G H I J K 00000 0000 000 000 000 000 000 000 000 000 E. Another Tree Problem 000 000 000 000 000 000 000

Solution

• Formula using Stirling numbers of second kind:

•
$$d^k = \sum_{i=0}^k S(k,i) \cdot d \cdot (d-1) \cdot \cdots \cdot (d-i+1)$$

•
$$d^k = \sum_{i=0}^{k} S(k,i) \cdot {d \choose i} \cdot i!$$

- S(k, i) is the Stirling number of second kind
 - The number of ways to color k element set into i colors
- So for every vertex v calculate array a:

•
$$a_i = \sum_u {d_{v,u} \choose i}$$

• To add one edge, one has to increase every $d_{v,u}$ by one

•
$$\binom{d+1}{i} = \binom{d}{i} + \binom{d}{i-1}$$

•
$$a_i^{\text{new}} = a_i + a_{i-1}$$

Solution

- To calculate a first make tree rooted
 - Sum up all $\binom{d}{i}$ over all descendants first
 - Then sum up all $\binom{d}{i}$ for not descendants by second DFS

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Solution

- To calculate a first make tree rooted
 - Sum up all $\binom{d}{i}$ over all descendants first
 - Then sum up all $\binom{d}{i}$ for not descendants by second DFS

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Calculate a for all vertices in O(nk) time

Solution

- To calculate a first make tree rooted
 - Sum up all $\binom{d}{i}$ over all descendants first
 - Then sum up all $\binom{d}{i}$ for not descendants by second DFS

- Calculate a for all vertices in O(nk) time
- Calculate S(i, j) and i!

Solution

- To calculate a first make tree rooted
 - Sum up all $\binom{d}{i}$ over all descendants first
 - Then sum up all $\binom{d}{i}$ for not descendants by second DFS

- Calculate a for all vertices in O(nk) time
- Calculate S(i, j) and i!
- Use formula to get answer for every vertex

・ロト ・聞ト ・ヨト ・ヨト

₹ 9Q@

• You are given a string s of length up to 10^5

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

- You are given a string s of length up to 10^5
- String consists of first 20 letters of alphabet

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- You are given a string s of length up to 10^5
- String consists of first 20 letters of alphabet
- Answer queries:
 - Given $c_1, c_2, \ldots c_k$ letters
 - k ≤ 5

- You are given a string s of length up to 10^5
- String consists of first 20 letters of alphabet
- Answer queries:
 - Given $c_1, c_2, \ldots c_k$ letters
 - k ≤ 5
 - Find number of pairs (*i*, *j*), so that *s*(*i*, *j*) contains even number of each of these *k* letters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

- For each prefix $0 \leq i \leq |s|$ find subset p_i :
 - which letters enter odd number of times

Solution

- For each prefix $0 \leq i \leq |s|$ find subset p_i :
 - which letters enter odd number of times
- For substring s(i+1,j) we have to calculate $p_i \oplus p_j$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Solution

- For each prefix $0 \leq i \leq |s|$ find subset p_i :
 - which letters enter odd number of times
- For substring s(i+1,j) we have to calculate $p_i \oplus p_j$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Calculate f_A — number of *i* such that $p_i = A$

Solution

- For each prefix $0 \leq i \leq |s|$ find subset p_i :
 - which letters enter odd number of times
- For substring s(i+1,j) we have to calculate $p_i \oplus p_j$

0.00

- Calculate f_A number of *i* such that $p_i = A$
- Calculate $g_A = \sum_{A \subset B} f_B$
 - It's just partial sums on $2\times 2\times \ldots \times 2$ array

ション ふゆ く 山 マ チャット しょうくしゃ

• Calculated in $O(2^{|\Sigma|}|\Sigma|)$

Solution

- To answer the queries:
 - p_i and p_j have to have equal parity for letters in query

・ロト ・個ト ・モト ・モト

Solution

- To answer the queries:
 - p_i and p_j have to have equal parity for letters in query

・ロト ・ 日本 ・ 日本 ・ 日本

32

- For each X of 2^k parities of given k letters get g_A
 - A contains only letters from query
 - Calculate $d_X = g_A$

Solution

- To answer the queries:
 - p_i and p_j have to have equal parity for letters in query
 - For each X of 2^k parities of given k letters get g_A
 - A contains only letters from query
 - Calculate $d_X = g_A$
 - Use inclusion-exclusion formula

• for
$$X = (2^k - 1) \dots 0$$
:
for $Y \supset X$:

$$d_X := d_X - d_Y$$

• *d_X* is number of *p_i*, so that given letters' parity is *X* and the other letters' parity is either odd or even

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Solution

- To answer the queries:
 - p_i and p_j have to have equal parity for letters in query
 - For each X of 2^k parities of given k letters get g_A
 - A contains only letters from query
 - Calculate $d_X = g_A$
 - Use inclusion-exclusion formula

• for
$$X = (2^k - 1) \dots 0$$
:
for $Y \supset X$:

$$d_X := d_X - d_Y$$

• *d_X* is number of *p_i*, so that given letters' parity is *X* and the other letters' parity is either odd or even

• Answer is
$$\sum_{X} \frac{d_X(d_X-1)}{2}$$

A	B	C	D	E	F	G	H	I	00	K
00000	00000	00	000	000	000	●○	00	000	1	000
Proble	m G. L	CM								

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Given n up to 10^9
- Find positive *a* and *b* such that

2 lcm(a, b) is maximum possible

Problem G. LCM										
A 00000	B 00000	С 00	D 000	E 000	F 000	G ⊙●	Н 00			К 000

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Solution

• If x > y and d > 0, then $xy \ge (x + d)(y - d)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- If x > y and d > 0, then $xy \ge (x + d)(y d)$
- p equal to smallest prime greater than $\frac{n}{2}$
 - It's coprime to n p, since n p < p
▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- If x > y and d > 0, then $xy \ge (x + d)(y d)$
- p equal to smallest prime greater than $\frac{n}{2}$
 - It's coprime to n p, since n p < p
 - So answer is not less than (n-p)p

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- If x > y and d > 0, then $xy \ge (x + d)(y d)$
- p equal to smallest prime greater than $\frac{n}{2}$
 - It's coprime to n p, since n p < p
 - So answer is not less than (n-p)p
 - You don't have to look to x > p

Solution

- If x > y and d > 0, then $xy \ge (x + d)(y d)$
- p equal to smallest prime greater than $\frac{n}{2}$
 - It's coprime to n p, since n p < p
 - So answer is not less than (n-p)p
 - You don't have to look to x > p
 - Gap between prime numbers is small enough to try every $\frac{n}{2} < x \le p$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

A B C D E F G H I J K 00000 00000 000 0000 000 000 000 000 000 000 H. Erase the String 0000 000 000 000 000 000 000

- Given a string of length not greater than 16
- In one move you can erase any subsequence, that is palindrome

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Find minimum number of moves to erase all string

H. Era	use the	Strin	g					
A 00000	B 00000	C 00	D 000	E 000	G 00	H ○●		K 000

• For every of $2^n - 1$ subsequences calculate if it's palindrome

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

00000	В 00000	00	000	000	Г 000	00	00	000	00	000
H. Era	ase the	Strin	g							

• For every of $2^n - 1$ subsequences calculate if it's palindrome

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

• Let ${\it P}$ be the set of all palindrome subsequences

Solution

• For every of $2^n - 1$ subsequences calculate if it's palindrome

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- Let P be the set of all palindrome subsequences
- f[A] minimum number of moves to erase subset A

Solution

• For every of $2^n - 1$ subsequences calculate if it's palindrome

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- Let P be the set of all palindrome subsequences
- f[A] minimum number of moves to erase subset A

•
$$f[A] = \min_{B \in P \land B \subset A} f[B] + 1$$

Solution

• For every of $2^n - 1$ subsequences calculate if it's palindrome

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- Let P be the set of all palindrome subsequences
- f[A] minimum number of moves to erase subset A

•
$$f[A] = \min_{B \in P \land B \subset A} f[B] + 1$$

• Calculated in $O(3^n)$

A	B	с	D	E	F	G	Н)	K
00000	00000	00	000	000	000	00	00	●00		000
I. Thi	ckness									

- You are given triangles
- For every k find the area of a plane covered by exactly k triangles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A	В	C	D	E	F	G	H	1	J	K
00000	00000	00	000	000	000	00	00	000	00	000
I. Thi	ckness									

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Solution

• Intersect all pairs of sides of all triangles

I Thi	olznass									
A	B	C	D	E	F	G	H	I	J	K
00000	00000	00	000	000	000	00	00	0●0	00	000

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

• $x_1 < x_2 < \cdots < x_k$ be those coordinates

00000	00000	00	000	000	000	00	00	000	00	000
I. Thi	ckness									

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices
 - $x_1 < x_2 < \cdots < x_k$ be those coordinates
- Consider the part of plane with points (x, y) such that $x_i < x < x_{i+1}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Solution

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices
 - $x_1 < x_2 < \cdots < x_k$ be those coordinates
- Consider the part of plane with points (x, y) such that $x_i < x < x_{i+1}$
- Intersection of this part of plane with every triangle is either empty set or trapezoid

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Solution

- Intersect all pairs of sides of all triangles
- Get all x-coordinates of all intersection and all vertices
 - $x_1 < x_2 < \cdots < x_k$ be those coordinates
- Consider the part of plane with points (x, y) such that $x_i < x < x_{i+1}$
- Intersection of this part of plane with every triangle is either empty set or trapezoid

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• No two non-vertical trapezoid sides intersect

A		С	D		G	н		K
							000	
I. Thi	ckness							

• Intersect every side of triangle with this part of the plane

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

A 00000	B 00000	C 00	D 000	E 000	G 00	H 00	I 00●	K 000
I. Thic	ckness							

• Intersect every side of triangle with this part of the plane

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Get middle point of intersection

A	00000	С	D	E	F	G	H	000	00	K
00000	B	00	000	000	000	00	00		J	000
I. Thi	ckness									

• Intersect every side of triangle with this part of the plane

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point

A	00000	С	D	E	F	G	H	000	00	K
00000	B	00	000	000	000	00	00		J	000
I. Thi	ckness									

• Intersect every side of triangle with this part of the plane

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point
- Do another sweepline iterating over segments

A B C D E F G H J K cocco cocco coc coc coc coc coc coc I. Thickness

Solution

- Intersect every side of triangle with this part of the plane
- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point
- Do another sweepline iterating over segments
- Each segment is either the start of a triangle or the end

• Keep track of k — number of triangles covering

Solution

- Intersect every side of triangle with this part of the plane
- Get middle point of intersection
- Sort all segments by y-coordinate of this middle point
- Do another sweepline iterating over segments
- Each segment is either the start of a triangle or the end
 - Keep track of k number of triangles covering
- Calculate trapezoid area and add it to corresponding answer

• You are given *n* natural numbers ($n \leq 50000$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- You are given *n* natural numbers ($n \leq 50000$)
 - Each number is not greater than 50 000

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

- You are given *n* natural numbers ($n \leq 50\,000$)
 - Each number is not greater than 50 000
- You are also given queries:
 - Each consists of L and R

- You are given *n* natural numbers ($n \leq 50\,000$)
 - Each number is not greater than 50 000
- You are also given queries:
 - Each consists of L and R
 - Find pair (i,j) such that $i \neq j$ and $L \leqslant i, j \leqslant R$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- You are given *n* natural numbers ($n \leq 50000$)
 - Each number is not greater than 50 000
- You are also given queries:
 - Each consists of L and R
 - Find pair (i, j) such that $i \neq j$ and $L \leqslant i, j \leqslant R$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

• And gcd(a_i, a_j) is maximum possible

A	B	C	D	E	F	G	H	I	J	K
00000	00000	00	000	000	000	00	00	000	○●	000
J. GC	D									

• Let's answer all queries in order of increasing R

A	B	C	D	E	F	G	H	I	J	K
00000	00000	00	000	000	000	00	00	000	○●	000
J. GC	D									

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v

A	B	C	D	E	F	G	H	I	J	K
00000	00000	00	000	000	000	00	00	000	⊙●	000
J. GC	D									

æ

・ロト ・四ト ・ヨト ・ヨト

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$

A	B	С	D	E	F	G	Н	I	00	K
00000	00000	00	000	000	000	00	00	000		000
J. GC	D									

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$
 - For every $L \leqslant i$ answer is at least v

L GC	D							
A 00000	B 00000	C 00	D 000	E 000	G 00	H 00	J ⊙●	K 000

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$
 - For every $L \leqslant i$ answer is at least v
 - For every $1 \leq i \leq R$ store the maximum possible divisor of a_i

(日) (四) (日) (日)

э

J. GCI)							
A 00000	B 00000	C 00	D 000	E 000	G 00	H 00	J ⊙●	K 000

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$
 - For every $L \leqslant i$ answer is at least v
 - For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_i

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

- Such v, so that there is j > i and $j \leq R$
- And $v \mid a_j$

J. GCI)							
A 00000	B 00000	C 00	D 000	E 000	G 00	H 00	J ⊙●	K 000

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$
 - For every $L \leqslant i$ answer is at least v
 - For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_i

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

- Such v, so that there is j > i and $j \leq R$
- And *v* | *a_j*
- Keep track of interval tree or binary indexed tree, say t

J. GCI)							
A 00000	B 00000	C 00	D 000	E 000	G 00	H 00	J ⊙●	K 000

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$
 - For every $L \leqslant i$ answer is at least v
 - For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_i

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

- Such v, so that there is j > i and $j \leq R$
- And *v* | *a_j*
- Keep track of interval tree or binary indexed tree, say t
- Keep track of last number, that is divisible by each v

J	. GCD)							
A 00		B 00000	C 00	D 000	E 000	G 00	H 00	0●	К 000

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$
 - For every $L \leqslant i$ answer is at least v
 - For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_i
 - Such v, so that there is j > i and $j \leq R$
 - And *v* | *a_j*
 - Keep track of interval tree or binary indexed tree, say t
 - Keep track of last number, that is divisible by each v
 - To increase R by one, iterate over all $v|a_R$
 - Maket[last[v]] := max(t[last[v]], v)
 - Update last[v] := R

A	B	С	D	E	F	G	H	I	J	K
00000	00000	00	000	000	000	00	00	000	○●	000
J. GC	D									

- Let's answer all queries in order of increasing R
 - Consider gcd is equal to v
 - Consider rightmost two positions $i < j \leq R$:
 - so that $v \mid a_i$ and $v \mid a_j$
 - For every $L \leqslant i$ answer is at least v
 - For every $1 \leqslant i \leqslant R$ store the maximum possible divisor of a_i
 - Such v, so that there is j > i and $j \leq R$
 - And *v* | *a_j*
 - Keep track of interval tree or binary indexed tree, say t
 - Keep track of last number, that is divisible by each v
 - To increase R by one, iterate over all $v|a_R$
 - Maket[last[v]] := max(t[last[v]], v)
 - Update last[v] := R
 - Answer for query (L, R) is maximum in t[L..R]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- You are given sequence of *n* points
- n is at most $5 \cdot 10^5$

A B C D E F G H I J K 00000 0000 000 000 000 000 000 000 000 000 K. Points on a Plane Image: Compare the second secon

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- You are given sequence of *n* points
- *n* is at most 5 · 10⁵
- Points are generated pseudorandomly
 - With coordinates up to *n*

A B C D E F G H I J K 00000 0000 000 0000 000 000 000 000 000 000 K. Points on a Plane Image: Compare the second s

- You are given sequence of *n* points
- n is at most $5 \cdot 10^5$
- Points are generated pseudorandomly
 - With coordinates up to *n*
- After each point answer, what is the distance between closest two points?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Solution

Maintain sorted by x-coordinate array of all already added points

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Solution

Maintain sorted by x-coordinate array of all already added points

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- When new (x_0, y_0) point added:
 - Let *d* be the current answer

Solution

Maintain sorted by x-coordinate array of all already added points

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- When new (x_0, y_0) point added:
 - Let *d* be the current answer
 - Check all points (x, y) such that $|x x_0| < d$
 - Other points are not closer than d

Solution

• Maintain sorted by x-coordinate array of all already added points

- When new (x_0, y_0) point added:
 - Let *d* be the current answer
 - Check all points (x, y) such that $|x x_0| < d$
 - Other points are not closer than d
 - Update answer by distance to these points

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Solution

- Intuitively the runtime is explained like this:
 - Consider we added p points to our set

Solution

- Intuitively the runtime is explained like this:
 - Consider we added p points to our set
 - Let's make $r \times r$ grid of $[1 \dots n] \times [1 \dots n]$ square

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Solution

- Intuitively the runtime is explained like this:
 - Consider we added p points to our set
 - Let's make $r \times r$ grid of $[1 \dots n] \times [1 \dots n]$ square
 - Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Solution

- Intuitively the runtime is explained like this:
 - Consider we added p points to our set
 - Let's make $r \times r$ grid of $[1 \dots n] \times [1 \dots n]$ square
 - Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
 - Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Solution

- Intuitively the runtime is explained like this:
 - Consider we added p points to our set
 - Let's make $r \times r$ grid of $[1 \dots n] \times [1 \dots n]$ square
 - Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
 - Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$

• So expected number of points in $x_0 - d < x < x_0 + d$ is $\frac{2pd}{n}$

Solution

- Intuitively the runtime is explained like this:
 - Consider we added p points to our set
 - Let's make $r \times r$ grid of $[1 \dots n] \times [1 \dots n]$ square
 - Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
 - Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$

ション ふゆ く 山 マ チャット しょうくしゃ

• So expected number of points in $x_0 - d < x < x_0 + d$ is $\frac{2pd}{r}$

•
$$d \approx \frac{n}{r} \approx \frac{n}{p}$$

• Expected number of points is $\frac{2pd}{n} \approx 2\frac{\frac{p}{p}p}{n} = 2$

Solution

- Intuitively the runtime is explained like this:
 - Consider we added p points to our set
 - Let's make $r \times r$ grid of $[1 \dots n] \times [1 \dots n]$ square
 - Choose r such that the probability of two points locating in the same cell is at least $\frac{1}{2}$
 - Birthday paradox says that number of cells can be quadratic of p, so $r \approx p$

ション ふゆ く 山 マ チャット しょうくしゃ

• So expected number of points in $x_0 - d < x < x_0 + d$ is $\frac{2pd}{r}$

•
$$d \approx \frac{n}{r} \approx \frac{n}{p}$$

• Expected number of points is $\frac{2pd}{n} \approx 2\frac{\frac{n}{p}p}{n} = 2$

• So summing up over all p, we get O(n) runtime