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@ Given a matrix
e of size up to 50
@ Color each element of matrix in one of two colors
@ You have up to 50000 awards you can get
@ Xx1,X2,¥1,Y¥2, cand m
o You get an award m if submatrix (x1, X2, y1, ¥2) is colored in ¢
@ There are also awards for each cell colored
e These one can be converted to the same awards as before

@ One cell is also submatrix

e Earn maximum amount of money
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@ Build a network, so that there is a bijection between
(S, T)-cuts and different colorings

o Make cut value equal to corresponding amount of money
@ We can find minimum cut and we have to maximize answer
o Assume that we already earned all the money and have to
return the money for non-satisfied awards
o Minimize amount of money we have to return
e Let this amount be the value of the cut
@ Consider one award, let's say c =0
o Create one vertex v for this award
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e Dividing elements into two subsets reminds of (S, T)-cut
@ Build a network, so that there is a bijection between
(S, T)-cuts and different colorings
o Make cut value equal to corresponding amount of money
@ We can find minimum cut and we have to maximize answer

o Assume that we already earned all the money and have to
return the money for non-satisfied awards

o Minimize amount of money we have to return

e Let this amount be the value of the cut

@ Consider one award, let's say ¢ = 0

o Create one vertex v for this award
o Add edges of +0o capacity from v to vertices in its submatrix
o Add edge of m capacity from source to v
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e Add edges of +00 capacity from vertices in its submatrix to v
o Add edge of m capacity from v to sink
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m-valued edge is intersecting a cut




A
00®00

A. Life game

@ Do for ¢ =1 in the same way
o Create one vertex v for this award
e Add edges of +00 capacity from vertices in its submatrix to v
e Add edge of m capacity from v to sink

@ One can see, that if award criterion is not satisfied, then

m-valued edge is intersecting a cut

o This will give up to 50?-50 000 edges and 50 4 50 000 vertices

e Pretty much for maxflow algorithms




A
000®0

A. Life game

@ Make 2D sparse table structure




A
000®0

A. Life game

@ Make 2D sparse table structure

o Add vertex for every r, c, k;, k¢
o Submatrix [r, r +2%) x [c, ¢ + 2k)




A
000®0

A. Life game

@ Make 2D sparse table structure

o Add vertex for every r, c, k;, k¢
o Submatrix [r, r +2%) x [c, ¢ + 2k)

@ Don't add edges from every cell to an award
o Add 4 edges from 4 submatrices of power-of-2 sizes to an
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A. Life game

@ Make 2D sparse table structure

o Add vertex for every r, c, k;, k¢
o Submatrix [r, r +2%) x [c, ¢ + 2k)

@ Don't add edges from every cell to an award
o Add 4 edges from 4 submatrices of power-of-2 sizes to an
award as in 2D sparse table
e We don't care if they overlap
@ Add +oo edges between power-of-2 size submatrices
e From big one to two times smaller ones
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A. Life game

@ Make 2 such structures

e One for outgoing edges
e Another for incoming edges

@ As it turns out, this optimization helps to get passed TL
o Fast algorithms like Dinitz or Preflow-push algorithms help

@ Here we have about 2 - 502 - log? 50 edges for sparse table
@ 5-50000 edges for edges between awards and submatrices
@ And 2502 - log? 50 4 50 000 vertices
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B. String Queries

@ You are given a string s
e Length up to 5000
@ You are also given queries

o Given L and R
o Find number of different substrings in s(L, R)
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@ Solution is similar to number of different colors in subtree of
rooted tree problem

Build an array of f; g — number of substrings in s(L, R)

Initialize f; ; = 0 for all / and j
Substring s(i, /) is inside all (x,y) for x <iandj <y
o Forall i <jadd 1 toall £, such that x <iand j <y

Get all substrings equal to some t
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o Subtract 1 of all £, such that x < e and jey1 <y
o forl<e<k
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B. String Queries

@ Solution is similar to number of different colors in subtree of
rooted tree problem

Build an array of f; g — number of substrings in s(L, R)

Initialize f; ; = 0 for all / and j
Substring s(i, /) is inside all (x,y) for x <iandj <y
o Forall i <jadd 1 toall £, such that x <iand j <y

Get all substrings equal to some t
o t= S(il,jl) = S(i2,_j2) =...= S(ik,jk)
0 < h<- <k
@ i—h=jo—h=-"=jk— Ik
o Subtract 1 of all £, such that x < e and jey1 <y
o forl<e<k

Then just answer all queries outputting f; g
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Why will it work?

o Consider some s(L, R)

@ Suppose there are w copies of t in s(L, R)
@ We added 1 for each of the copy, so it's +w

@ For each neighbouring copies we subtracted 1, so it's —(w — 1)
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B. String Queries

Why will it work?

o Consider some s(L, R)

@ Suppose there are w copies of t in s(L, R)
@ We added 1 for each of the copy, so it's +w
@ For each neighbouring copies we subtracted 1, so it's —(w — 1)

@ Soit's w— (w — 1) = +1 for each substring that is inside
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o Calculate LCP(i,j)
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B. String Queries

o Calculate LCP(i,j)
o Longest common prefix of s(i, |s|) and s(j, |s|)
Fix i and iterate over j
Find equal substrings to those, which start at /
Maintain d the longest substring found so far
If LCP(i,j) > d
o We found substrings with lengths d +1...LCP(i,})

@ For each substring of length d + 1 < g < LCP(/,J) subtract 1
@ Subtract 1 from f,, such that x <iand j+g—-1<y

Partial sums will help iterating over g

And 2D Partial sums will help adding ., for x <iand j <y

Solution time and memory complexity is O(|s|?> + Q)
e @ — the number of queries
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B. String Queries

Suffix tree or automaton solution

@ For every suffix build suffix data structure in linear time

o Append single letter
o Learn how the number of substrings changed

@ For automaton it's += len[last] - len[suflLink[last]]

e Still O(|s|?) time and O(|s|?) memory solution
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C. Coprimes

e Given n up to 28
@ Find number of different permutations

o Of length n
e Every two consecutive elements are coprime
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C. Coprimes

@ For each x we are interested in the subset of [1...n], so that
X is coprime to them

@ Build equivalence classes on that criteria

@ Based on these equivalence classes count number of different
multisets of classes

o There are 1728000 of those

@ Make dynamic programming
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D. Colored Balls

@ You are given n white balls

@ In one turn you choose (/,r), sothat 1 </ <r<n
equiprobably

@ Color each ball x, such that / < x < r, to black

@ What is the expected number of turns, so that every ball is
colored?
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@ Answer is > p(i)
i=0
e p(x) is the probability, that in x moves there exists a white ball
@ How to calculate p(x)?
e dj is the probability to leave A white in x moves
o Choosing these intervals will color some subset of A
e Use inclusion-exclusion formula
o Probability to color all balls in x moves 3" da - (—1)!!
A

o ca is the number of intervals that cover only balls from A

o Then dy = ((fj‘l))
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+00
@ Answer is > p(i)
i=0
e p(x) is the probability, that in x moves there exists a white ball
@ How to calculate p(x)?
e dj is the probability to leave A white in x moves
o Choosing these intervals will color some subset of A
e Use inclusion-exclusion formula
o Probability to color all balls in x moves 3" da - (—1)!!
A

o ca is the number of intervals that cover only balls from A
X
o Then dsy = | -2~
("2)

@ So answer is %O <1 - ;(_1)IA| (("Cfl)>i>

i=0 2
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@ We know that dy = 1, so:

i=0 A%
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@ We know that dy = 1, so:

o Answeris: 5% 3 (~1)A (("Cfl))i

i=0 A%

+oo ]
o Change the order > (-1)A <(,,Cfl)>
i=o \\2

A£D
e It's 2" geometric series sums
@ For every ca and (JA| mod 2) calculate the number of such A

@ As an exercise come up with dynamic programming polynomial
solution to do that

v
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@ You are given a tree
e Number of vertices is at most 50 000
o Calculate for each vertex v:
° Yo di,
u

o dy, is the distance from v to u
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E. Another Tree Problem

@ You are given a tree

o Number of vertices is at most 50 000
o Calculate for each vertex v:

o > df,

° ux,y is the distance from v to u

e kis up to 50
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e Formula using Stirling numbers of second kind:

o dk = 25( iod-(d—1)--- (d—i+1)

o dk = Z S(k,i)- ( )
o S(k, ) |s the Stirling number of second kind
@ The number of ways to color k element set into i colors
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E. Another Tree Problem

e Formula using Stirling numbers of second kind:

o dk = 25( Nod (d—1)- - (d—i+1)

o dk = ZS(k iy-(9)-i
o S(k, ) |s the Stirling number of second kind

@ The number of ways to color k element set into i colors

@ So for every vertex v calculate array a:
dy,u
o aj =3 (%)
u
@ To add one edge, one has to increase every d, , by one

o (“1)=()+()

1
P =a; +ai_1

oa




E

ooe

E. Another Tree Problem

@ To calculate a first make tree rooted
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E. Another Tree Problem

@ To calculate a first make tree rooted
e Sum up all (7) over all descendants first
o Then sum up all (%) for not descendants by second DFS

o Calculate a for all vertices in O(nk) time
o Calculate S(i,/) and /!

@ Use formula to get answer for every vertex
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F. String and Queries-2

@ You are given a string s of length up to 10°

@ String consists of first 20 letters of alphabet
@ Answer queries:
e Given ¢, ¢, ... cx — letters
e k<5
e Find number of pairs (i, ), so that s(i,j) contains even
number of each of these k letters
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F. String and Queries-2

@ For each prefix 0 < 7 < |s| find subset p;:

e which letters enter odd number of times
@ For substring s(i + 1,;) we have to calculate p; @ p;
o Calculate f4 — number of i such that p; = A

o Calculate ga = > f5
ACB
o It's just partial sums on 2 X 2 X ... X 2 array
o Calculated in O(2/*1]x|)
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F. String and Queries-2

@ To answer the queries:

pi and p; have to have equal parity for letters in query
o For each X of 2X parities of given k letters get ga

@ A contains only letters from query

o Calculate dx = ga
Use inclusion-exclusion formula
for X =(2K—-1)...0:

for Y D X:
dx = dx — dy

e dx is number of p;, so that given letters’ parity is X and the

other letters’ parity is either odd or even
o Answer is »_ w

X




Problem G. LCM

e Given n up to 10°
@ Find positive a and b such that

Q@ at+b=n
@ lcm(a, b) is maximum possible
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Problem G. LCM

o If x>y andd>0,then xy > (x + d)(y — d)

@ p equal to smallest prime greater than 5

It's coprime to n — p, since n—p < p

So answer is not less than (n — p)p

You don't have to look to x > p

Gap between prime numbers is small enough to try every
53<x<p




H. Erase the String

@ Given a string of length not greater than 16
@ In one move you can erase any subsequence, that is palindrome

@ Find minimum number of moves to erase all string
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H. Erase the String

@ For every of 2" — 1 subsequences calculate if it's palindrome
o Let P be the set of all palindrome subsequences

@ f[A] — minimum number of moves to erase subset A

o f[A]= min f[B]+1
BEPABCA

o Calculated in O(3")




I. Thickness

@ You are given triangles

@ For every k find the area of a plane covered by exactly k
triangles
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I. Thickness

@ Intersect all pairs of sides of all triangles

o Get all x-coordinates of all intersection and all vertices
@ X1 < Xp < ---< xi be those coordinates
@ Consider the part of plane with points (x, y) such that
Xi < X < Xj41
@ Intersection of this part of plane with every triangle is either
empty set or trapezoid

@ No two non-vertical trapezoid sides intersect
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I. Thickness

@ Intersect every side of triangle with this part of the plane

Get middle point of intersection
Sort all segments by y-coordinate of this middle point

Do another sweepline iterating over segments

Each segment is either the start of a triangle or the end
o Keep track of k — number of triangles covering

Calculate trapezoid area and add it to corresponding answer

v
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@ You are given n natural numbers (n < 50000)
e Each number is not greater than 50 000

@ You are also given queries:

o Each consists of L and R
o Find pair (i,j) such that i # jand L <i,j < R
e And gcd(aj, aj) is maximum possible
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J. GCD

@ Let's answer all queries in order of increasing R

o Consider gcd is equal to v
o Consider rightmost two positions i < j < R:

@ sothat v|a;and v | aj

For every L < i answer is at least v

For every 1 < i < R store the maximum possible divisor of a;
@ Such v, so that thereis j > /i and j < R
e And v | g

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
e To increase R by one, iterate over all v|ag

o Make t[last[v]] := max(t[last[v]], v)

o Update last[v] := R

Answer for query (L, R) is maximum in t[L..R]
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K. Points on a Plane

@ You are given sequence of n points

@ nis at most 5-10°
@ Points are generated pseudorandomly
e With coordinates up to n
@ After each point answer, what is the distance between closest
two points?
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K. Points on a Plane

@ Maintain sorted by x-coordinate array of all already added
points
@ When new (x, yo) point added:

o Let d be the current answer
o Check all points (x, y) such that |[x — x| < d

@ Other points are not closer than d

e Update answer by distance to these points
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K. Points on a Plane

@ Intuitively the runtime is explained like this:
o Consider we added p points to our set
o Let's make r x r grid of [1...n] x [1...n] square
@ Choose r such that the probability of two points locating in
the same cell is at least 1
o Birthday paradox says that number of cells can be quadratic
of psor=xp

e So expected number of pointsin xg —d < x < xg+d is
o d~ln

T~ p

d

n

o Expected number of points is 2""’ ) 257‘) =2

e So summing up over all p, we get O(n) runtime
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