
A B C D E F G H I J K

IV Кубок України з
програмування

Official Solutions
Contest 3, div1

2025

A B C D E F G H I J K

A. Life game

Given a matrix
of size up to 50

Color each element of matrix in one of two colors
You have up to 50 000 awards you can get

x1, x2, y1, y2, c and m
You get an award m if submatrix (x1, x2, y1, y2) is colored in c

There are also awards for each cell colored
These one can be converted to the same awards as before

One cell is also submatrix

Earn maximum amount of money

A B C D E F G H I J K

A. Life game

Given a matrix
of size up to 50

Color each element of matrix in one of two colors

You have up to 50 000 awards you can get
x1, x2, y1, y2, c and m
You get an award m if submatrix (x1, x2, y1, y2) is colored in c

There are also awards for each cell colored
These one can be converted to the same awards as before

One cell is also submatrix

Earn maximum amount of money

A B C D E F G H I J K

A. Life game

Given a matrix
of size up to 50

Color each element of matrix in one of two colors
You have up to 50 000 awards you can get

x1, x2, y1, y2, c and m
You get an award m if submatrix (x1, x2, y1, y2) is colored in c

There are also awards for each cell colored
These one can be converted to the same awards as before

One cell is also submatrix

Earn maximum amount of money

A B C D E F G H I J K

A. Life game

Given a matrix
of size up to 50

Color each element of matrix in one of two colors
You have up to 50 000 awards you can get

x1, x2, y1, y2, c and m
You get an award m if submatrix (x1, x2, y1, y2) is colored in c

There are also awards for each cell colored
These one can be converted to the same awards as before

One cell is also submatrix

Earn maximum amount of money

A B C D E F G H I J K

A. Life game

Given a matrix
of size up to 50

Color each element of matrix in one of two colors
You have up to 50 000 awards you can get

x1, x2, y1, y2, c and m
You get an award m if submatrix (x1, x2, y1, y2) is colored in c

There are also awards for each cell colored
These one can be converted to the same awards as before

One cell is also submatrix

Earn maximum amount of money

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut

Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money

We can find minimum cut and we have to maximize answer
Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards

Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return

Let this amount be the value of the cut
Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award

Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix

Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Dividing elements into two subsets reminds of 〈S ,T 〉-cut
Build a network, so that there is a bijection between
〈S ,T 〉-cuts and different colorings

Make cut value equal to corresponding amount of money
We can find minimum cut and we have to maximize answer

Assume that we already earned all the money and have to
return the money for non-satisfied awards
Minimize amount of money we have to return
Let this amount be the value of the cut

Consider one award, let’s say c = 0

Create one vertex v for this award
Add edges of +∞ capacity from v to vertices in its submatrix
Add edge of m capacity from source to v

A B C D E F G H I J K

A. Life game

Solution
Do for c = 1 in the same way

Create one vertex v for this award
Add edges of +∞ capacity from vertices in its submatrix to v
Add edge of m capacity from v to sink

One can see, that if award criterion is not satisfied, then
m-valued edge is intersecting a cut
This will give up to 502 · 50 000 edges and 50 + 50 000 vertices

Pretty much for maxflow algorithms

A B C D E F G H I J K

A. Life game

Solution
Do for c = 1 in the same way

Create one vertex v for this award
Add edges of +∞ capacity from vertices in its submatrix to v
Add edge of m capacity from v to sink

One can see, that if award criterion is not satisfied, then
m-valued edge is intersecting a cut

This will give up to 502 · 50 000 edges and 50 + 50 000 vertices
Pretty much for maxflow algorithms

A B C D E F G H I J K

A. Life game

Solution
Do for c = 1 in the same way

Create one vertex v for this award
Add edges of +∞ capacity from vertices in its submatrix to v
Add edge of m capacity from v to sink

One can see, that if award criterion is not satisfied, then
m-valued edge is intersecting a cut
This will give up to 502 · 50 000 edges and 50 + 50 000 vertices

Pretty much for maxflow algorithms

A B C D E F G H I J K

A. Life game

Optimizing
Make 2D sparse table structure

Add vertex for every r , c , kr , kc
Submatrix [r , r + 2kr)× [c, c + 2kc)

Don’t add edges from every cell to an award
Add 4 edges from 4 submatrices of power-of-2 sizes to an
award as in 2D sparse table
We don’t care if they overlap

Add +∞ edges between power-of-2 size submatrices
From big one to two times smaller ones

A B C D E F G H I J K

A. Life game

Optimizing
Make 2D sparse table structure

Add vertex for every r , c , kr , kc
Submatrix [r , r + 2kr)× [c, c + 2kc)

Don’t add edges from every cell to an award
Add 4 edges from 4 submatrices of power-of-2 sizes to an
award as in 2D sparse table
We don’t care if they overlap

Add +∞ edges between power-of-2 size submatrices
From big one to two times smaller ones

A B C D E F G H I J K

A. Life game

Optimizing
Make 2D sparse table structure

Add vertex for every r , c , kr , kc
Submatrix [r , r + 2kr)× [c, c + 2kc)

Don’t add edges from every cell to an award
Add 4 edges from 4 submatrices of power-of-2 sizes to an
award as in 2D sparse table
We don’t care if they overlap

Add +∞ edges between power-of-2 size submatrices
From big one to two times smaller ones

A B C D E F G H I J K

A. Life game

Optimizing
Make 2D sparse table structure

Add vertex for every r , c , kr , kc
Submatrix [r , r + 2kr)× [c, c + 2kc)

Don’t add edges from every cell to an award
Add 4 edges from 4 submatrices of power-of-2 sizes to an
award as in 2D sparse table
We don’t care if they overlap

Add +∞ edges between power-of-2 size submatrices
From big one to two times smaller ones

A B C D E F G H I J K

A. Life game

Optimizing
Make 2 such structures

One for outgoing edges
Another for incoming edges

As it turns out, this optimization helps to get passed TL
Fast algorithms like Dinitz or Preflow-push algorithms help

Here we have about 2 · 502 · log2 50 edges for sparse table
5 · 50 000 edges for edges between awards and submatrices
And 2 · 502 · log2 50 + 50 000 vertices

A B C D E F G H I J K

A. Life game

Optimizing
Make 2 such structures

One for outgoing edges
Another for incoming edges

As it turns out, this optimization helps to get passed TL

Fast algorithms like Dinitz or Preflow-push algorithms help

Here we have about 2 · 502 · log2 50 edges for sparse table
5 · 50 000 edges for edges between awards and submatrices
And 2 · 502 · log2 50 + 50 000 vertices

A B C D E F G H I J K

A. Life game

Optimizing
Make 2 such structures

One for outgoing edges
Another for incoming edges

As it turns out, this optimization helps to get passed TL
Fast algorithms like Dinitz or Preflow-push algorithms help

Here we have about 2 · 502 · log2 50 edges for sparse table
5 · 50 000 edges for edges between awards and submatrices
And 2 · 502 · log2 50 + 50 000 vertices

A B C D E F G H I J K

A. Life game

Optimizing
Make 2 such structures

One for outgoing edges
Another for incoming edges

As it turns out, this optimization helps to get passed TL
Fast algorithms like Dinitz or Preflow-push algorithms help

Here we have about 2 · 502 · log2 50 edges for sparse table
5 · 50 000 edges for edges between awards and submatrices
And 2 · 502 · log2 50 + 50 000 vertices

A B C D E F G H I J K

B. String Queries

You are given a string s

Length up to 5 000

You are also given queries
Given L and R
Find number of different substrings in s(L,R)

A B C D E F G H I J K

B. String Queries

You are given a string s

Length up to 5 000

You are also given queries
Given L and R
Find number of different substrings in s(L,R)

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem

Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t
t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem
Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t
t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem
Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t
t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem
Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t
t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem
Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t

t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem
Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t
t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem
Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t
t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Solution
Solution is similar to number of different colors in subtree of
rooted tree problem
Build an array of fL,R — number of substrings in s(L,R)

Initialize fi ,j = 0 for all i and j

Substring s(i , j) is inside all (x , y) for x 6 i and j 6 y

For all i 6 j add 1 to all fx,y such that x 6 i and j 6 y

Get all substrings equal to some t
t = s(i1, j1) = s(i2, j2) = . . . = s(ik , jk)

i1 < i2 < · · · < ik
j1 − i1 = j2 − i2 = · · · = jk − ik

Subtract 1 of all fx,y such that x 6 ie and je+1 6 y

for 1 6 e < k

Then just answer all queries outputting fL,R

A B C D E F G H I J K

B. String Queries

Why will it work?

Consider some s(L,R)

Suppose there are w copies of t in s(L,R)

We added 1 for each of the copy, so it’s +w

For each neighbouring copies we subtracted 1, so it’s −(w − 1)

So it’s w − (w − 1) = +1 for each substring that is inside

A B C D E F G H I J K

B. String Queries

Why will it work?

Consider some s(L,R)

Suppose there are w copies of t in s(L,R)

We added 1 for each of the copy, so it’s +w

For each neighbouring copies we subtracted 1, so it’s −(w − 1)

So it’s w − (w − 1) = +1 for each substring that is inside

A B C D E F G H I J K

B. String Queries

Why will it work?

Consider some s(L,R)

Suppose there are w copies of t in s(L,R)

We added 1 for each of the copy, so it’s +w

For each neighbouring copies we subtracted 1, so it’s −(w − 1)

So it’s w − (w − 1) = +1 for each substring that is inside

A B C D E F G H I J K

B. String Queries

Why will it work?

Consider some s(L,R)

Suppose there are w copies of t in s(L,R)

We added 1 for each of the copy, so it’s +w

For each neighbouring copies we subtracted 1, so it’s −(w − 1)

So it’s w − (w − 1) = +1 for each substring that is inside

A B C D E F G H I J K

B. String Queries

Why will it work?

Consider some s(L,R)

Suppose there are w copies of t in s(L,R)

We added 1 for each of the copy, so it’s +w

For each neighbouring copies we subtracted 1, so it’s −(w − 1)

So it’s w − (w − 1) = +1 for each substring that is inside

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)

Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j

Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i

Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far

If LCP(i , j) > d
We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1

Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g

And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Implementation

Calculate LCP(i , j)

Longest common prefix of s(i , |s|) and s(j , |s|)
Fix i and iterate over j
Find equal substrings to those, which start at i
Maintain d the longest substring found so far
If LCP(i , j) > d

We found substrings with lengths d + 1 . . . LCP(i , j)

For each substring of length d + 1 6 g 6 LCP(i , j) subtract 1
Subtract 1 from fx,y such that x 6 i and j + g − 1 6 y

Partial sums will help iterating over g
And 2D Partial sums will help adding fx ,y for x 6 i and j 6 y

Solution time and memory complexity is O(|s|2 + Q)

Q — the number of queries

A B C D E F G H I J K

B. String Queries

Suffix tree or automaton solution
For every suffix build suffix data structure in linear time

Append single letter
Learn how the number of substrings changed

For automaton it’s += len[last] - len[sufLink[last]]

Still O(|s|2) time and O(|s|2) memory solution

A B C D E F G H I J K

B. String Queries

Suffix tree or automaton solution
For every suffix build suffix data structure in linear time
Append single letter

Learn how the number of substrings changed

For automaton it’s += len[last] - len[sufLink[last]]

Still O(|s|2) time and O(|s|2) memory solution

A B C D E F G H I J K

B. String Queries

Suffix tree or automaton solution
For every suffix build suffix data structure in linear time
Append single letter

Learn how the number of substrings changed

For automaton it’s += len[last] - len[sufLink[last]]

Still O(|s|2) time and O(|s|2) memory solution

A B C D E F G H I J K

B. String Queries

Suffix tree or automaton solution
For every suffix build suffix data structure in linear time
Append single letter

Learn how the number of substrings changed

For automaton it’s += len[last] - len[sufLink[last]]

Still O(|s|2) time and O(|s|2) memory solution

A B C D E F G H I J K

C. Coprimes

Given n up to 28

Find number of different permutations
Of length n
Every two consecutive elements are coprime

A B C D E F G H I J K

C. Coprimes

Given n up to 28
Find number of different permutations

Of length n
Every two consecutive elements are coprime

A B C D E F G H I J K

C. Coprimes

Solution
For each x we are interested in the subset of [1 . . . n], so that
x is coprime to them

Build equivalence classes on that criteria
Based on these equivalence classes count number of different
multisets of classes

There are 1 728 000 of those

Make dynamic programming

A B C D E F G H I J K

C. Coprimes

Solution
For each x we are interested in the subset of [1 . . . n], so that
x is coprime to them
Build equivalence classes on that criteria

Based on these equivalence classes count number of different
multisets of classes

There are 1 728 000 of those

Make dynamic programming

A B C D E F G H I J K

C. Coprimes

Solution
For each x we are interested in the subset of [1 . . . n], so that
x is coprime to them
Build equivalence classes on that criteria
Based on these equivalence classes count number of different
multisets of classes

There are 1 728 000 of those

Make dynamic programming

A B C D E F G H I J K

C. Coprimes

Solution
For each x we are interested in the subset of [1 . . . n], so that
x is coprime to them
Build equivalence classes on that criteria
Based on these equivalence classes count number of different
multisets of classes

There are 1 728 000 of those

Make dynamic programming

A B C D E F G H I J K

D. Colored Balls

You are given n white balls

In one turn you choose (l , r), so that 1 6 l 6 r 6 n
equiprobably
Color each ball x , such that l 6 x 6 r , to black
What is the expected number of turns, so that every ball is
colored?

A B C D E F G H I J K

D. Colored Balls

You are given n white balls
In one turn you choose (l , r), so that 1 6 l 6 r 6 n
equiprobably

Color each ball x , such that l 6 x 6 r , to black
What is the expected number of turns, so that every ball is
colored?

A B C D E F G H I J K

D. Colored Balls

You are given n white balls
In one turn you choose (l , r), so that 1 6 l 6 r 6 n
equiprobably
Color each ball x , such that l 6 x 6 r , to black

What is the expected number of turns, so that every ball is
colored?

A B C D E F G H I J K

D. Colored Balls

You are given n white balls
In one turn you choose (l , r), so that 1 6 l 6 r 6 n
equiprobably
Color each ball x , such that l 6 x 6 r , to black
What is the expected number of turns, so that every ball is
colored?

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball

How to calculate p(x)?
dA is the probability to leave A white in x moves

Choosing these intervals will color some subset of A
Use inclusion-exclusion formula

Probability to color all balls in x moves
∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves
Choosing these intervals will color some subset of A

Use inclusion-exclusion formula
Probability to color all balls in x moves

∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves

Choosing these intervals will color some subset of A
Use inclusion-exclusion formula

Probability to color all balls in x moves
∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves
Choosing these intervals will color some subset of A

Use inclusion-exclusion formula
Probability to color all balls in x moves

∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves
Choosing these intervals will color some subset of A

Use inclusion-exclusion formula

Probability to color all balls in x moves
∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves
Choosing these intervals will color some subset of A

Use inclusion-exclusion formula
Probability to color all balls in x moves

∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves
Choosing these intervals will color some subset of A

Use inclusion-exclusion formula
Probability to color all balls in x moves

∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves
Choosing these intervals will color some subset of A

Use inclusion-exclusion formula
Probability to color all balls in x moves

∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution

Answer is
+∞∑
i=0

p(i)

p(x) is the probability, that in x moves there exists a white ball
How to calculate p(x)?

dA is the probability to leave A white in x moves
Choosing these intervals will color some subset of A

Use inclusion-exclusion formula
Probability to color all balls in x moves

∑
A

dA · (−1)|A|

cA is the number of intervals that cover only balls from A

Then dA =

(
cA

(n+1
2)

)x

So answer is
+∞∑
i=0

(
1−

∑
A

(−1)|A|
(

cA
(n+1

2)

)i
)

A B C D E F G H I J K

D. Colored Balls

Solution
We know that d∅ = 1, so:

Answer is:
+∞∑
i=0

∑
A6=∅

(−1)|A|
(

cA
(n+1

2)

)i

Change the order
∑
A6=∅

(−1)|A|
+∞∑
i=0

(
cA

(n+1
2)

)i

It’s 2n geometric series sums

For every cA and (|A| mod 2) calculate the number of such A

As an exercise come up with dynamic programming polynomial
solution to do that

A B C D E F G H I J K

D. Colored Balls

Solution
We know that d∅ = 1, so:

Answer is:
+∞∑
i=0

∑
A6=∅

(−1)|A|
(

cA
(n+1

2)

)i

Change the order
∑
A6=∅

(−1)|A|
+∞∑
i=0

(
cA

(n+1
2)

)i

It’s 2n geometric series sums

For every cA and (|A| mod 2) calculate the number of such A

As an exercise come up with dynamic programming polynomial
solution to do that

A B C D E F G H I J K

D. Colored Balls

Solution
We know that d∅ = 1, so:

Answer is:
+∞∑
i=0

∑
A6=∅

(−1)|A|
(

cA
(n+1

2)

)i

Change the order
∑
A6=∅

(−1)|A|
+∞∑
i=0

(
cA

(n+1
2)

)i

It’s 2n geometric series sums

For every cA and (|A| mod 2) calculate the number of such A

As an exercise come up with dynamic programming polynomial
solution to do that

A B C D E F G H I J K

D. Colored Balls

Solution
We know that d∅ = 1, so:

Answer is:
+∞∑
i=0

∑
A6=∅

(−1)|A|
(

cA
(n+1

2)

)i

Change the order
∑
A6=∅

(−1)|A|
+∞∑
i=0

(
cA

(n+1
2)

)i

It’s 2n geometric series sums

For every cA and (|A| mod 2) calculate the number of such A

As an exercise come up with dynamic programming polynomial
solution to do that

A B C D E F G H I J K

E. Another Tree Problem

You are given a tree

Number of vertices is at most 50 000

Calculate for each vertex v :∑
u
dk
v ,u

dx,y is the distance from v to u
k is up to 50

A B C D E F G H I J K

E. Another Tree Problem

You are given a tree
Number of vertices is at most 50 000

Calculate for each vertex v :∑
u
dk
v ,u

dx,y is the distance from v to u
k is up to 50

A B C D E F G H I J K

E. Another Tree Problem

You are given a tree
Number of vertices is at most 50 000

Calculate for each vertex v :

∑
u
dk
v ,u

dx,y is the distance from v to u
k is up to 50

A B C D E F G H I J K

E. Another Tree Problem

You are given a tree
Number of vertices is at most 50 000

Calculate for each vertex v :∑
u
dk
v ,u

dx,y is the distance from v to u
k is up to 50

A B C D E F G H I J K

E. Another Tree Problem

You are given a tree
Number of vertices is at most 50 000

Calculate for each vertex v :∑
u
dk
v ,u

dx,y is the distance from v to u

k is up to 50

A B C D E F G H I J K

E. Another Tree Problem

You are given a tree
Number of vertices is at most 50 000

Calculate for each vertex v :∑
u
dk
v ,u

dx,y is the distance from v to u
k is up to 50

A B C D E F G H I J K

E. Another Tree Problem

Solution
Formula using Stirling numbers of second kind:

dk =
k∑

i=0

S(k , i) · d · (d − 1) · · · · · (d − i + 1)

dk =
k∑

i=0

S(k , i) ·
(
d
i

)
· i !

S(k, i) is the Stirling number of second kind
The number of ways to color k element set into i colors

So for every vertex v calculate array a:
ai =

∑
u

(
dv,u
i

)
To add one edge, one has to increase every dv ,u by one(

d+1
i

)
=
(
d
i

)
+
(

d
i−1

)
anewi = ai + ai−1

A B C D E F G H I J K

E. Another Tree Problem

Solution
Formula using Stirling numbers of second kind:

dk =
k∑

i=0

S(k , i) · d · (d − 1) · · · · · (d − i + 1)

dk =
k∑

i=0

S(k , i) ·
(
d
i

)
· i !

S(k, i) is the Stirling number of second kind
The number of ways to color k element set into i colors

So for every vertex v calculate array a:
ai =

∑
u

(
dv,u
i

)

To add one edge, one has to increase every dv ,u by one(
d+1
i

)
=
(
d
i

)
+
(

d
i−1

)
anewi = ai + ai−1

A B C D E F G H I J K

E. Another Tree Problem

Solution
Formula using Stirling numbers of second kind:

dk =
k∑

i=0

S(k , i) · d · (d − 1) · · · · · (d − i + 1)

dk =
k∑

i=0

S(k , i) ·
(
d
i

)
· i !

S(k, i) is the Stirling number of second kind
The number of ways to color k element set into i colors

So for every vertex v calculate array a:
ai =

∑
u

(
dv,u
i

)
To add one edge, one has to increase every dv ,u by one(

d+1
i

)
=
(
d
i

)
+
(

d
i−1

)
anewi = ai + ai−1

A B C D E F G H I J K

E. Another Tree Problem

Solution
To calculate a first make tree rooted

Sum up all
(
d
i

)
over all descendants first

Then sum up all
(
d
i

)
for not descendants by second DFS

Calculate a for all vertices in O(nk) time
Calculate S(i , j) and i !

Use formula to get answer for every vertex

A B C D E F G H I J K

E. Another Tree Problem

Solution
To calculate a first make tree rooted

Sum up all
(
d
i

)
over all descendants first

Then sum up all
(
d
i

)
for not descendants by second DFS

Calculate a for all vertices in O(nk) time

Calculate S(i , j) and i !

Use formula to get answer for every vertex

A B C D E F G H I J K

E. Another Tree Problem

Solution
To calculate a first make tree rooted

Sum up all
(
d
i

)
over all descendants first

Then sum up all
(
d
i

)
for not descendants by second DFS

Calculate a for all vertices in O(nk) time
Calculate S(i , j) and i !

Use formula to get answer for every vertex

A B C D E F G H I J K

E. Another Tree Problem

Solution
To calculate a first make tree rooted

Sum up all
(
d
i

)
over all descendants first

Then sum up all
(
d
i

)
for not descendants by second DFS

Calculate a for all vertices in O(nk) time
Calculate S(i , j) and i !

Use formula to get answer for every vertex

A B C D E F G H I J K

F. String and Queries-2

You are given a string s of length up to 105

String consists of first 20 letters of alphabet
Answer queries:

Given c1, c2, . . . ck — letters
k 6 5

Find number of pairs (i , j), so that s(i , j) contains even
number of each of these k letters

A B C D E F G H I J K

F. String and Queries-2

You are given a string s of length up to 105

String consists of first 20 letters of alphabet

Answer queries:
Given c1, c2, . . . ck — letters

k 6 5

Find number of pairs (i , j), so that s(i , j) contains even
number of each of these k letters

A B C D E F G H I J K

F. String and Queries-2

You are given a string s of length up to 105

String consists of first 20 letters of alphabet
Answer queries:

Given c1, c2, . . . ck — letters
k 6 5

Find number of pairs (i , j), so that s(i , j) contains even
number of each of these k letters

A B C D E F G H I J K

F. String and Queries-2

You are given a string s of length up to 105

String consists of first 20 letters of alphabet
Answer queries:

Given c1, c2, . . . ck — letters
k 6 5

Find number of pairs (i , j), so that s(i , j) contains even
number of each of these k letters

A B C D E F G H I J K

F. String and Queries-2

Solution
For each prefix 0 6 i 6 |s| find subset pi :

which letters enter odd number of times

For substring s(i + 1, j) we have to calculate pi ⊕ pj

Calculate fA — number of i such that pi = A

Calculate gA =
∑
A⊂B

fB

It’s just partial sums on 2× 2× . . .× 2 array
Calculated in O(2|Σ||Σ|)

A B C D E F G H I J K

F. String and Queries-2

Solution
For each prefix 0 6 i 6 |s| find subset pi :

which letters enter odd number of times

For substring s(i + 1, j) we have to calculate pi ⊕ pj

Calculate fA — number of i such that pi = A

Calculate gA =
∑
A⊂B

fB

It’s just partial sums on 2× 2× . . .× 2 array
Calculated in O(2|Σ||Σ|)

A B C D E F G H I J K

F. String and Queries-2

Solution
For each prefix 0 6 i 6 |s| find subset pi :

which letters enter odd number of times

For substring s(i + 1, j) we have to calculate pi ⊕ pj

Calculate fA — number of i such that pi = A

Calculate gA =
∑
A⊂B

fB

It’s just partial sums on 2× 2× . . .× 2 array
Calculated in O(2|Σ||Σ|)

A B C D E F G H I J K

F. String and Queries-2

Solution
For each prefix 0 6 i 6 |s| find subset pi :

which letters enter odd number of times

For substring s(i + 1, j) we have to calculate pi ⊕ pj

Calculate fA — number of i such that pi = A

Calculate gA =
∑
A⊂B

fB

It’s just partial sums on 2× 2× . . .× 2 array
Calculated in O(2|Σ||Σ|)

A B C D E F G H I J K

F. String and Queries-2

Solution
To answer the queries:

pi and pj have to have equal parity for letters in query

For each X of 2k parities of given k letters get gA
A contains only letters from query
Calculate dX = gA

Use inclusion-exclusion formula
for X = (2k − 1) . . . 0:

for Y ⊃ X:
dX := dX − dY

dX is number of pi , so that given letters’ parity is X and the
other letters’ parity is either odd or even
Answer is

∑
X

dX (dX−1)
2

A B C D E F G H I J K

F. String and Queries-2

Solution
To answer the queries:

pi and pj have to have equal parity for letters in query
For each X of 2k parities of given k letters get gA

A contains only letters from query
Calculate dX = gA

Use inclusion-exclusion formula
for X = (2k − 1) . . . 0:

for Y ⊃ X:
dX := dX − dY

dX is number of pi , so that given letters’ parity is X and the
other letters’ parity is either odd or even
Answer is

∑
X

dX (dX−1)
2

A B C D E F G H I J K

F. String and Queries-2

Solution
To answer the queries:

pi and pj have to have equal parity for letters in query
For each X of 2k parities of given k letters get gA

A contains only letters from query
Calculate dX = gA

Use inclusion-exclusion formula
for X = (2k − 1) . . . 0:

for Y ⊃ X:
dX := dX − dY

dX is number of pi , so that given letters’ parity is X and the
other letters’ parity is either odd or even

Answer is
∑
X

dX (dX−1)
2

A B C D E F G H I J K

F. String and Queries-2

Solution
To answer the queries:

pi and pj have to have equal parity for letters in query
For each X of 2k parities of given k letters get gA

A contains only letters from query
Calculate dX = gA

Use inclusion-exclusion formula
for X = (2k − 1) . . . 0:

for Y ⊃ X:
dX := dX − dY

dX is number of pi , so that given letters’ parity is X and the
other letters’ parity is either odd or even
Answer is

∑
X

dX (dX−1)
2

A B C D E F G H I J K

Problem G. LCM

Given n up to 109

Find positive a and b such that
1 a + b = n
2 lcm(a, b) is maximum possible

A B C D E F G H I J K

Problem G. LCM

Solution
If x > y and d > 0, then xy > (x + d)(y − d)

p equal to smallest prime greater than n
2

It’s coprime to n − p, since n − p < p
So answer is not less than (n − p)p
You don’t have to look to x > p
Gap between prime numbers is small enough to try every
n
2 < x 6 p

A B C D E F G H I J K

Problem G. LCM

Solution
If x > y and d > 0, then xy > (x + d)(y − d)

p equal to smallest prime greater than n
2

It’s coprime to n − p, since n − p < p

So answer is not less than (n − p)p
You don’t have to look to x > p
Gap between prime numbers is small enough to try every
n
2 < x 6 p

A B C D E F G H I J K

Problem G. LCM

Solution
If x > y and d > 0, then xy > (x + d)(y − d)

p equal to smallest prime greater than n
2

It’s coprime to n − p, since n − p < p
So answer is not less than (n − p)p

You don’t have to look to x > p
Gap between prime numbers is small enough to try every
n
2 < x 6 p

A B C D E F G H I J K

Problem G. LCM

Solution
If x > y and d > 0, then xy > (x + d)(y − d)

p equal to smallest prime greater than n
2

It’s coprime to n − p, since n − p < p
So answer is not less than (n − p)p
You don’t have to look to x > p

Gap between prime numbers is small enough to try every
n
2 < x 6 p

A B C D E F G H I J K

Problem G. LCM

Solution
If x > y and d > 0, then xy > (x + d)(y − d)

p equal to smallest prime greater than n
2

It’s coprime to n − p, since n − p < p
So answer is not less than (n − p)p
You don’t have to look to x > p
Gap between prime numbers is small enough to try every
n
2 < x 6 p

A B C D E F G H I J K

H. Erase the String

Given a string of length not greater than 16
In one move you can erase any subsequence, that is palindrome
Find minimum number of moves to erase all string

A B C D E F G H I J K

H. Erase the String

Solution
For every of 2n − 1 subsequences calculate if it’s palindrome

Let P be the set of all palindrome subsequences

f [A] — minimum number of moves to erase subset A
f [A] = min

B∈P∧B⊂A
f [B] + 1

Calculated in O(3n)

A B C D E F G H I J K

H. Erase the String

Solution
For every of 2n − 1 subsequences calculate if it’s palindrome

Let P be the set of all palindrome subsequences

f [A] — minimum number of moves to erase subset A
f [A] = min

B∈P∧B⊂A
f [B] + 1

Calculated in O(3n)

A B C D E F G H I J K

H. Erase the String

Solution
For every of 2n − 1 subsequences calculate if it’s palindrome

Let P be the set of all palindrome subsequences

f [A] — minimum number of moves to erase subset A

f [A] = min
B∈P∧B⊂A

f [B] + 1

Calculated in O(3n)

A B C D E F G H I J K

H. Erase the String

Solution
For every of 2n − 1 subsequences calculate if it’s palindrome

Let P be the set of all palindrome subsequences

f [A] — minimum number of moves to erase subset A
f [A] = min

B∈P∧B⊂A
f [B] + 1

Calculated in O(3n)

A B C D E F G H I J K

H. Erase the String

Solution
For every of 2n − 1 subsequences calculate if it’s palindrome

Let P be the set of all palindrome subsequences

f [A] — minimum number of moves to erase subset A
f [A] = min

B∈P∧B⊂A
f [B] + 1

Calculated in O(3n)

A B C D E F G H I J K

I. Thickness

You are given triangles
For every k find the area of a plane covered by exactly k
triangles

A B C D E F G H I J K

I. Thickness

Solution
Intersect all pairs of sides of all triangles

Get all x-coordinates of all intersection and all vertices
x1 < x2 < · · · < xk be those coordinates

Consider the part of plane with points (x , y) such that
xi < x < xi+1

Intersection of this part of plane with every triangle is either
empty set or trapezoid
No two non-vertical trapezoid sides intersect

A B C D E F G H I J K

I. Thickness

Solution
Intersect all pairs of sides of all triangles
Get all x-coordinates of all intersection and all vertices

x1 < x2 < · · · < xk be those coordinates

Consider the part of plane with points (x , y) such that
xi < x < xi+1

Intersection of this part of plane with every triangle is either
empty set or trapezoid
No two non-vertical trapezoid sides intersect

A B C D E F G H I J K

I. Thickness

Solution
Intersect all pairs of sides of all triangles
Get all x-coordinates of all intersection and all vertices

x1 < x2 < · · · < xk be those coordinates

Consider the part of plane with points (x , y) such that
xi < x < xi+1

Intersection of this part of plane with every triangle is either
empty set or trapezoid
No two non-vertical trapezoid sides intersect

A B C D E F G H I J K

I. Thickness

Solution
Intersect all pairs of sides of all triangles
Get all x-coordinates of all intersection and all vertices

x1 < x2 < · · · < xk be those coordinates

Consider the part of plane with points (x , y) such that
xi < x < xi+1

Intersection of this part of plane with every triangle is either
empty set or trapezoid

No two non-vertical trapezoid sides intersect

A B C D E F G H I J K

I. Thickness

Solution
Intersect all pairs of sides of all triangles
Get all x-coordinates of all intersection and all vertices

x1 < x2 < · · · < xk be those coordinates

Consider the part of plane with points (x , y) such that
xi < x < xi+1

Intersection of this part of plane with every triangle is either
empty set or trapezoid
No two non-vertical trapezoid sides intersect

A B C D E F G H I J K

I. Thickness

Solution
Intersect every side of triangle with this part of the plane

Get middle point of intersection
Sort all segments by y-coordinate of this middle point
Do another sweepline iterating over segments
Each segment is either the start of a triangle or the end

Keep track of k — number of triangles covering

Calculate trapezoid area and add it to corresponding answer

A B C D E F G H I J K

I. Thickness

Solution
Intersect every side of triangle with this part of the plane
Get middle point of intersection

Sort all segments by y-coordinate of this middle point
Do another sweepline iterating over segments
Each segment is either the start of a triangle or the end

Keep track of k — number of triangles covering

Calculate trapezoid area and add it to corresponding answer

A B C D E F G H I J K

I. Thickness

Solution
Intersect every side of triangle with this part of the plane
Get middle point of intersection
Sort all segments by y-coordinate of this middle point

Do another sweepline iterating over segments
Each segment is either the start of a triangle or the end

Keep track of k — number of triangles covering

Calculate trapezoid area and add it to corresponding answer

A B C D E F G H I J K

I. Thickness

Solution
Intersect every side of triangle with this part of the plane
Get middle point of intersection
Sort all segments by y-coordinate of this middle point
Do another sweepline iterating over segments

Each segment is either the start of a triangle or the end
Keep track of k — number of triangles covering

Calculate trapezoid area and add it to corresponding answer

A B C D E F G H I J K

I. Thickness

Solution
Intersect every side of triangle with this part of the plane
Get middle point of intersection
Sort all segments by y-coordinate of this middle point
Do another sweepline iterating over segments
Each segment is either the start of a triangle or the end

Keep track of k — number of triangles covering

Calculate trapezoid area and add it to corresponding answer

A B C D E F G H I J K

I. Thickness

Solution
Intersect every side of triangle with this part of the plane
Get middle point of intersection
Sort all segments by y-coordinate of this middle point
Do another sweepline iterating over segments
Each segment is either the start of a triangle or the end

Keep track of k — number of triangles covering

Calculate trapezoid area and add it to corresponding answer

A B C D E F G H I J K

J. GCD

You are given n natural numbers (n 6 50 000)

Each number is not greater than 50 000

You are also given queries:
Each consists of L and R
Find pair (i , j) such that i 6= j and L 6 i , j 6 R

And gcd(ai , aj) is maximum possible

A B C D E F G H I J K

J. GCD

You are given n natural numbers (n 6 50 000)
Each number is not greater than 50 000

You are also given queries:
Each consists of L and R
Find pair (i , j) such that i 6= j and L 6 i , j 6 R

And gcd(ai , aj) is maximum possible

A B C D E F G H I J K

J. GCD

You are given n natural numbers (n 6 50 000)
Each number is not greater than 50 000

You are also given queries:
Each consists of L and R

Find pair (i , j) such that i 6= j and L 6 i , j 6 R

And gcd(ai , aj) is maximum possible

A B C D E F G H I J K

J. GCD

You are given n natural numbers (n 6 50 000)
Each number is not greater than 50 000

You are also given queries:
Each consists of L and R
Find pair (i , j) such that i 6= j and L 6 i , j 6 R

And gcd(ai , aj) is maximum possible

A B C D E F G H I J K

J. GCD

You are given n natural numbers (n 6 50 000)
Each number is not greater than 50 000

You are also given queries:
Each consists of L and R
Find pair (i , j) such that i 6= j and L 6 i , j 6 R

And gcd(ai , aj) is maximum possible

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v

Consider rightmost two positions i < j 6 R:
so that v | ai and v | aj

For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj

For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v

For every 1 6 i 6 R store the maximum possible divisor of ai
Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t

Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v

To increase R by one, iterate over all v |aR
Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

J. GCD

Solution
Let’s answer all queries in order of increasing R

Consider gcd is equal to v
Consider rightmost two positions i < j 6 R:

so that v | ai and v | aj
For every L 6 i answer is at least v
For every 1 6 i 6 R store the maximum possible divisor of ai

Such v , so that there is j > i and j 6 R
And v | aj

Keep track of interval tree or binary indexed tree, say t
Keep track of last number, that is divisible by each v
To increase R by one, iterate over all v |aR

Make t[last[v]] := max(t[last[v]], v)
Update last[v] := R

Answer for query (L,R) is maximum in t[L..R]

A B C D E F G H I J K

K. Points on a Plane

You are given sequence of n points
n is at most 5 · 105

Points are generated pseudorandomly
With coordinates up to n

After each point answer, what is the distance between closest
two points?

A B C D E F G H I J K

K. Points on a Plane

You are given sequence of n points
n is at most 5 · 105

Points are generated pseudorandomly
With coordinates up to n

After each point answer, what is the distance between closest
two points?

A B C D E F G H I J K

K. Points on a Plane

You are given sequence of n points
n is at most 5 · 105

Points are generated pseudorandomly
With coordinates up to n

After each point answer, what is the distance between closest
two points?

A B C D E F G H I J K

K. Points on a Plane

Solution
Maintain sorted by x-coordinate array of all already added
points

When new (x0, y0) point added:
Let d be the current answer
Check all points (x , y) such that |x − x0| < d

Other points are not closer than d

Update answer by distance to these points

A B C D E F G H I J K

K. Points on a Plane

Solution
Maintain sorted by x-coordinate array of all already added
points
When new (x0, y0) point added:

Let d be the current answer

Check all points (x , y) such that |x − x0| < d

Other points are not closer than d

Update answer by distance to these points

A B C D E F G H I J K

K. Points on a Plane

Solution
Maintain sorted by x-coordinate array of all already added
points
When new (x0, y0) point added:

Let d be the current answer
Check all points (x , y) such that |x − x0| < d

Other points are not closer than d

Update answer by distance to these points

A B C D E F G H I J K

K. Points on a Plane

Solution
Maintain sorted by x-coordinate array of all already added
points
When new (x0, y0) point added:

Let d be the current answer
Check all points (x , y) such that |x − x0| < d

Other points are not closer than d

Update answer by distance to these points

A B C D E F G H I J K

K. Points on a Plane

Solution
Intuitively the runtime is explained like this:

Consider we added p points to our set

Let’s make r × r grid of [1 . . . n]× [1 . . . n] square
Choose r such that the probability of two points locating in
the same cell is at least 1

2

Birthday paradox says that number of cells can be quadratic
of p, so r ≈ p

So expected number of points in x0 − d < x < x0 + d is 2pd
n

d ≈ n
r ≈

n
p

Expected number of points is 2pd
n
≈ 2

n
p
p

n
= 2

So summing up over all p, we get O(n) runtime

A B C D E F G H I J K

K. Points on a Plane

Solution
Intuitively the runtime is explained like this:

Consider we added p points to our set
Let’s make r × r grid of [1 . . . n]× [1 . . . n] square

Choose r such that the probability of two points locating in
the same cell is at least 1

2

Birthday paradox says that number of cells can be quadratic
of p, so r ≈ p

So expected number of points in x0 − d < x < x0 + d is 2pd
n

d ≈ n
r ≈

n
p

Expected number of points is 2pd
n
≈ 2

n
p
p

n
= 2

So summing up over all p, we get O(n) runtime

A B C D E F G H I J K

K. Points on a Plane

Solution
Intuitively the runtime is explained like this:

Consider we added p points to our set
Let’s make r × r grid of [1 . . . n]× [1 . . . n] square

Choose r such that the probability of two points locating in
the same cell is at least 1

2

Birthday paradox says that number of cells can be quadratic
of p, so r ≈ p

So expected number of points in x0 − d < x < x0 + d is 2pd
n

d ≈ n
r ≈

n
p

Expected number of points is 2pd
n
≈ 2

n
p
p

n
= 2

So summing up over all p, we get O(n) runtime

A B C D E F G H I J K

K. Points on a Plane

Solution
Intuitively the runtime is explained like this:

Consider we added p points to our set
Let’s make r × r grid of [1 . . . n]× [1 . . . n] square

Choose r such that the probability of two points locating in
the same cell is at least 1

2

Birthday paradox says that number of cells can be quadratic
of p, so r ≈ p

So expected number of points in x0 − d < x < x0 + d is 2pd
n

d ≈ n
r ≈

n
p

Expected number of points is 2pd
n
≈ 2

n
p
p

n
= 2

So summing up over all p, we get O(n) runtime

A B C D E F G H I J K

K. Points on a Plane

Solution
Intuitively the runtime is explained like this:

Consider we added p points to our set
Let’s make r × r grid of [1 . . . n]× [1 . . . n] square

Choose r such that the probability of two points locating in
the same cell is at least 1

2

Birthday paradox says that number of cells can be quadratic
of p, so r ≈ p

So expected number of points in x0 − d < x < x0 + d is 2pd
n

d ≈ n
r ≈

n
p

Expected number of points is 2pd
n
≈ 2

n
p
p

n
= 2

So summing up over all p, we get O(n) runtime

A B C D E F G H I J K

K. Points on a Plane

Solution
Intuitively the runtime is explained like this:

Consider we added p points to our set
Let’s make r × r grid of [1 . . . n]× [1 . . . n] square

Choose r such that the probability of two points locating in
the same cell is at least 1

2

Birthday paradox says that number of cells can be quadratic
of p, so r ≈ p

So expected number of points in x0 − d < x < x0 + d is 2pd
n

d ≈ n
r ≈

n
p

Expected number of points is 2pd
n
≈ 2

n
p
p

n
= 2

So summing up over all p, we get O(n) runtime

A B C D E F G H I J K

K. Points on a Plane

Solution
Intuitively the runtime is explained like this:

Consider we added p points to our set
Let’s make r × r grid of [1 . . . n]× [1 . . . n] square

Choose r such that the probability of two points locating in
the same cell is at least 1

2

Birthday paradox says that number of cells can be quadratic
of p, so r ≈ p

So expected number of points in x0 − d < x < x0 + d is 2pd
n

d ≈ n
r ≈

n
p

Expected number of points is 2pd
n
≈ 2

n
p
p

n
= 2

So summing up over all p, we get O(n) runtime

	tutorials_div1

