
IV Кубок України з програмування

Official Solutions

Contest 2, div1

2025

2

A. Add, Remove, Transform

ad_hoc, math

A. Add, Remove, Transform

3

Observation: For a subgraph isomorphic to a path of length 6, you can reorder the
vertices in any order.

A. Add, Remove, Transform

4

A. Add, Remove, Transform

5

– For tree of 6 vertices, there are 6 non-isomorphic trees.

– Five are shown in the picture, and one is a star graph.

– Wehave shown that a tree of 6 verticeswhich is not a star graph could be a line graph

by some sequence of operations, and any line graph could be reordered.

– Therefore any tree of 6 vertices could be any tree of 6 vertices by a sequence of

operationswhen both trees are not a star graph.

A. Add, Remove, Transform

6

– First, let’smake the diameter of tree less than or equal to 4.
– If there is a path of length 3 starting fromvertex 1, remove edges at the path and add

edges by operation. By this operation, degree of 1 increases by 1.

– Therefore after someoperations there is no path of length 3 starting fromvertex 1,

resulting in a treewith diameter less than or equal to 4.

A. Add, Remove, Transform

7

– If diameter is less than or equal to 3, we are done. Let’s assume that diameter of a tree
is 4.

– Let (1, 2, 3, 4, 5)be a path of length 4.
– LetG1,G2,G3 each be a partition of components ofG \ {1, 2, 3, 4, 5}where
components ofGi is connectedwith i+ 1 inG.

A. Add, Remove, Transform

8

– Since diameter of tree is less than or equal to 4, there is no edge inG1 andG3.

A. Add, Remove, Transform

9

– Wecan remove edges inG2.

A. Add, Remove, Transform

10

– Wecanmove vertices inG3 toG1.

A. Add, Remove, Transform

11

– If |G| = 5, by removing edges (2, 3), (3, 4), (4, 5) and adding (2, 4), (3, 5), (2, 5), we get

a tree of diameter 3.

– Otherwise,G \ {1, 2, 3, 4, 5} is not empty. Let v be any vertex inG \ {1, 2, 3, 4, 5}.

A. Add, Remove, Transform

12

– Wecouldmove 5 intoG2.

– Nowwehave a treewhereG2 has no edges andG3 has no vertices. This is a tree of

diameter 3.

13

B. Big Sieve Game
greedy, number_theory

B. Big Sieve Game

14

Definition

– Let’s define an operation as an i–operation that increases or decreases pj by 1 for all j
divisible by i.

B. Big Sieve Game

15

Observations

– The value of p1 is determined solely by 1–operation. There is no need for 1–operation

thereafter.

– For a prime number q, the value of pq is determined by 1–operation and q–operation.

Similarly, there is no need for 1–operation or q-operations thereafter.

– In general, for k, pk is determined once all d–operation are completed for all divisors d

of k.

B. Big Sieve Game

16

GreedyStrategy

– Based on the observations, the optimal strategy is to prioritize determining pa before pb
when a|b and a < b.

– Therefore, simply iterating through i = 1 . . . n in order and using i–operation to

immediately set pi to 0 repeatedly achieves theminimumvalue required by the

problem.

17

C. Catch The Flea
graph

C. Catch The Flea

18

– Let’s solve the problem in reverse.

– For any given cell, if it is possible to escape outside the trap by jumpingK cells in its

weak direction, it is considered an escapable cell.

– The cells reachable fromescapable cells, i.e., Rwithin K cells to the left, Lwithin K cells

to the right, Dwithin K cells upwards, andUwithin K cells downwards from the

escapable cell are escapable cells.

– Therefore, we can recursively find escapable cells.

C. Catch The Flea

19

– To optimize the runtime,we pre-process the nearest R on the left, L on the right, D

upwards, andUdownwards for each cell.

– Due to the tight time limit,managing connection informationwith vectorsmight lead to

a time limit exceeded.

– Since each cell requires atmost 4 connection information, it can be solved using

arrays.

20

D. Decorative Birds
dp, sweeping, segment_tree

D. Decorative Birds

21

First, we can plot the situation on a 2Dplane.

Consider a planewith x-axis denoting time and y-axis denoting speed of geese.

Then a line segment of lengthLparallel to x-axis represents a goose.

D. Decorative Birds

22

Consider a set of segments that can be selected.

(= a set of geese that can be feeded)

Let’s observe properties of setswhich can be selected.

D. Decorative Birds

In this picture, green segments cover the red segment.

23

D. Decorative Birds

24

Every selected segment shouldn’t be covered by segmentswhich are not selected.
Satisfying this condition for all segments is equivalent to saying that the set is valid.

Idea. Consider a histogram.
If we choose every segmentwhich is not fully contained in a histogram, they forma

valid set. (The formal proof is simple, so it is omitted.)

D. Decorative Birds

25

An example of a set generated by a histogram

D. Decorative Birds

26

Idea. Consider a histogram.

Every histogramgenerates a valid set of segment.

Conversely, every valid set of segments has a histogramgenerating it.

The area of histogramwould be the union of areas under a segment not in the set.

D. Decorative Birds

27

D. Decorative Birds

28

D. Decorative Birds

29

Idea. Consider a histogram.

The conclusion of this idea is thatwe can consider every valid set by considering

histograms that can be drawn.

Let’s think about a dynamic programming algorithmon constructing histograms.

D. Decorative Birds

30

By compressing coordinates, we only haveO(N)points, both x-value and y-value.

Di,j :=maximumsumofweight of segments in a histogramwhich is drawn for x value

[0, i] and the height of the i-th unit segment is j.

Here, a segment is in a histogramdrawn for x value [0, i] if every point on a segment

having x-value less than i is in the histogram.

D. Decorative Birds

31

Here green segments are related toFi,j and red segments are related toAi,j .

D. Decorative Birds

32

Di+1,j = max
1≤k≤N

(Di,k +max(Fi+1,k − Fi+1,j , 0)) + Ai+1,j

– Fi,j := sumofweight of segmentswhich is under j and covers both i− 1-th and i-th

unit segment.

– Ai,j := sumofweight of segmentswhich appears at i-th unit segment and is over j.

...But this DP iswrong!

D. Decorative Birds

33

D. Decorative Birds

34

One segment can be calculatedmultiple times!

Nowwe should use the property thatevery segment has same length,L.

Let’s limit the length of a ’roof’ at leastL.
The ’roof’ of a histogrammeans an interval having localmaximum.

Since every segment has same length, any segment is only calculated atmost once.

By ’sweeping down’,wecan show that every valid set can be generated by only using

such histograms.

35

D. Decorative Birds
To limit the length of roofs, we can divide the DP into two tables, Uphill part / Downhill
part.

Uphill part has a restriction that k ≤ jmust be held.

Downhill part has a restriction that j ≤ kmust be held.

Propagation fromuphill to downhill must be delayed for lengthL.

Propagation fromdownhill to uphill can be done directly.

Note that at propagation fromuphill to downhill, delayed lengthmeans x-value, not the

number of unit segments.

The coordinates are compressed.

D. Decorative Birds

36

Nowwegot anO(N3) solution. We need to improve thismethod.

Consider histogramsmadeby sweeping down a set.

We can cover all sets by only such histograms.

Idea. Every height changingonly occurs on start/endof segments.
More precisely, the histogram jumps up to a starting point of a segment and falls down

froma ending point of a segment.

The number of such points isO(N).

D. Decorative Birds

37

Use segment trees to storeDP.

At a certain x-value, a segment tree holds a rowof aDP table.

Uphill part can implemented by a simple lazymax segment tree.

Ui,j = max
k≤j

(Ui−1,k) +Ai,j

By the previous idea, k < j case only occur on a starting point and this can be done by

a rangemaxquery. Most of cellsmaintain its value.

ForA, total segment appearing events occursN times and each appearing can be

done by a lazy addition operation.

D. Decorative Birds

38

Downhill part is very complicated and requires sophisticated data structure technique.

Di,j = max
j≤k

(Di−1,k + Fi−1,k)− Fi−1,j +Ai,j

By the previous idea, j < k case only occur on an ending point.

An ending point spreads the propagation by doing a rangemax update query.

But theF term is very annoying...

D. Decorative Birds

39

If k = j,F termhas no effect.

Maintained valueswithout changing height can be tackled same as uphill.

Idea. Rangeupdates ofF occurO(N) times.
Appearing and disappearing of segments changesF for some range, [y,N].

Sowe canmanage a rowofF by a lazy segment tree.

D. Decorative Birds

40

The spreading is done by applyingDj = max(Dj ,x+ Fj) andDj = Dj + aqueries.

To handle propagation fromdownhill to uphill, we need to do some rangemaxquery

forD.

So, we have to do...

– Given x, y,Dj = max(Dj ,x+ Fj) for j ∈ [1, y]

– Given f , y,Fj = Fj + f for j ∈ [y,N]

– Given a, y,Dj = Dj + a for j ∈ [1, y]

– Given y, getmax
j≤y

(Dj)

D. Decorative Birds

41

Store 5 values for each node: D,F ,x, f , a

Theymean lazy queries,D = max(D,x+ F) + a andF+ = f .

D is rangemax ofDj andF is rangemax ofFj .

Two lazy values can be added:

Applying x2, f2, a2 toD,F ,x1, f1, a1
=> max(D,F + x2) + a2,F + f2, max(x1 − f2,x2 − a1), f1 + f2, a1 + a2

OK, it works for every querieswewant!

D. Decorative Birds

42

Our last problem is the propagation fromuphill to downhill.

However, it’s easy since the height never be changed!
Just delay the update and calculate sumofA for lengthLby using a fenwick tree or

structure youwant. It’s just 2D sumquery.

Finally we simulatedO(N3)DPsolution inO(NlogN)with a segment tree.

Youmight need to consider somedetails to implement. Good Luck!

43

E. Excellent HLD
heavy_light_decomposition

E. Excellent HLD

44

– The problemcan be viewed as increasing theweight of edges in a path for each query

and solving the sumofweight of heavy edge for every vertex.

– Observation: ForQqueries, number of changes of heavy edge is bounded to

4QlogN .

E. Excellent HLD

45

– Definehld-heavy edge as a heavy edge in heavy light decomposition, where the child
incident to heavy edge has the biggest subtree size. Definehld-light edge as edges
that are not hld-heavy edge.

– Whenwe addweight to a path, we can observe that heavy edge either changes to the

edge in the path or it does not change.

– Let’s assume that heavy edge changes to the edge on a path for every vertex on a
path.

E. Excellent HLD

46

– Whenwe follow the hld-light edge in upward direction, size of subtree doubles.

Therefore there are atmost logN hld-light edge in a path froma leaf vertex to root

vertex.

– There are atmost 2logN hld-light edges on a path. Therefore there are atmost

2QlogN changeswhere heavy edge changes into hld-light edge.

– For each vertex, there aremore changeswhere heavy edge changes into hld-light

edge than heavy edge changes into a hld-heavy edge. So the number of heavy edge

change is bounded to 4QlogN .

E. Excellent HLD

47

– Since the number of heavy edge change is bounded, let’s try to find the change of
heavy edge fast enough.

– For each query, by using heavy light decomposition, we can divide the path on a tree

into logN chains.

– For each chain, use segment tree to store (weight of hld-heavy edge) - (maximum
weight of hld-light edge) for every vertex. Bymaintaining such value for vertices that
have heavy edge on hld-light edge,we can efficiently find the change of heavy edge

fromhld-light edge to hld-heavy edge inO(logN) time for each change.

– Total complexity isO((N +Q)log2N).

48

F. Full Irreducibility
ad_hoc

F. Full Irreducibility

49

– DenoteDi = {P1,P2, · · · ,Pi}. ForP to be an irreducible permutation,

Di ≠ {1, 2, · · · , i} should satisfy for 1 ≤ i ≤ N − 1.

– When ith element and i+ 1th element is swapped,Di changes andDj remains the

same for every j ≠ i.

– For every indices iwhereDi = {1, 2, · · · , i}, swap ith element and i+ 1th element.

The order does notmatter.

50

G. GoodTriangle
ad_hoc, segment_tree

G. Good Triangle

51

– Let’s try to find a simplerway to definewhether there is a point having samedistance
fromgiven three points.

– A circle inmanhattan distance is 45degree rotated square. Let’s rotate the grid 45
degrees.

– If coordinates aremonotone, there is no square that passes through three dots.

Otherwise there always exists such square.

– By using segment tree, we can find the number of three dots that havemonotone

coordinate.

52

H. Holes in Queue
ad_hoc, segtree, two_pointer

H. Holes in Queue

53

– Let’s define f (d)(x) as the number on the xth index after dpopoperations.

– Then the following properties hold:

• f (0)(x) = x

• f (d)(x) = f (d−1)(f(x))

• f(x) = x+ (# of deletion points≤ x)

– Naively implementing this functionwill lead tomore thanO(d) time complexity per

query.

H. Holes in Queue

54

– Let’s sort (A[1],A[2], ...,A[N]), and assumeA[0] = 0,A[N + 1] = ∞.

– It is clear that for all x < A[1], f (d)(x) = x.

– Sowewill consider only xs greater than or equal toA[1] further on.

– Thenwe canmodify the property as:

• f(x) = x+ i, whereA[i] ≤ x < A[i+ 1]

– And it can be further improved to:

• f (d)(x) = x+ d× i, whereA[i] ≤ x < x+ (d− 1)× i < A[i+ 1]

– Therefore the critical part of this problem is to figure out a cleverway tomanage cases

where bothA[i] ≤ x < A[i+ 1], andA[i+ 1] ≤ x+ i.

H. Holes in Queue

55

– Themain idea is to partition thewhole queue into ’blocks’, such that for all the elements
froma left block, their f(x)will be placed in an adjacent right block.

– We can do thiswith the following simple algorithm:

• Start fromA[1]. The initial block length is 1.

• Repeat partitioningwith length 1 until wemeetA[2].

• Increment the block length by 1.

• Repeat partitioningwith length 2 until wemeetA[3].

• Increment the block length by 1.

•

H. Holes in Queue

56

– This is an examplewhere the deletion points are 1, 3, 8, 10.

• (1) (2) 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
• (1) (2) (3 4) (5 6) 7 8 9 10 11 12 13 14 15 16 17
• (1) (2) (3 4) (5 6) (7 8 9) 10 11 12 13 14 15 16 17
• (1) (2) (3 4) (5 6) (7 8 9) (10 11 12 13) (14 15 16 17)

H. Holes in Queue

57

– You can notice that the problem is nowmuch easier.

– Let’s define:
• len(b) =(length of the bth block)
• g(b, i) =(ith element of the bth block)

– Thenwe can rewrite f to:

• f(g(b, i)) =

g(b+ 1, i), if len(b) == len(b+ 1)

g(b+ 1, j), otherwise
• where the above j is the ith non-deletion index of the b+ 1th block.

• Note that at least 1 deletion index exists in the 2nd case.

H. Holes in Queue

58

– Now thewhole problemcomes down to finding the appropriate j, where

• fD(g(b, i)) = g(b+D, j)

– Let’s further define:
• R[i] = j,where fd(A[i]) = g(_, j), when d is sufficiently large

– Wecan calculate allR[i]swith proper segment tree operations.

H. Holes in Queue

59

– Wecan calculate the appropriate j using sequenceR[1],R[2],...,R[N].

– Let’s try to calculate fD(g(b, i)).

– First findR[k], which is the ith smallest element amongR[1],R[2], ...,R[len(b)].

– Then j is the # of elements smaller or equal toR[k] amongR[1],R[2], ...,R[len(b+D)].

– One can prove it directly easilly, sowe skip the proof in this section.

H. Holes in Queue

60

– SinceD is constant, we can conduct a twopointer of the index of blocks b and b+D

and answer the queries offline.

– Keep inmind that the number of blocksmay be large as 1018, but the number of blocks

with distinct lengths don’t exceedN , and the block lengthmonotonically increases.

One needs careful implementation to bound the time complexity.

– With segment tree similar to the onewe used to findR[i]s, we can do both operations

inO(logN).

– The total time complexity isO((N +Q)logN +QlogQ), due to sorting and segtree

operations.

H. Holes in Queue

61

– Instead of using twopointers, we can also use 2Ddata structures such as persistent

segment trees.

– With this implementation, we can also process querieswith differentDswith the same

time complexity, butmuch slower due to high constants.

62

I. Isn’t It Beautiful?
ad_hoc

I. Isn’t It Beautiful?

63

– Let the ith bit of xbe 0 and 0, 1, · · · , i− 1th bit of xbe 1. Then x&Aj could not be 2i.

– So it is optimal for bits higher than ith bit to be 0. Therefore x = 2i − 1 for some i.

– By bruteforcing through 0 ≤ i ≤ 20, we can get the answer.

64

J. Joy Of Sleep
graph

J. Joy Of Sleep

65

– First, the time it takes for the i-th chameleon towake the j-th chameleon is

max(|Xi −Xj |, |Yi − Yj |) if the colors of the two chameleons are the same, and
min(|Xi −Xj |, |Yi − Yj |) if the colors are different.

– Let’s define the event of the i-th chameleonwaking the j-th chameleon satisfying
Ci = Cj as ‘using amax edge,’which takesmax_edge(i, j) seconds.

– Similarly, let’s define the event of the i-th chameleonwaking the j-th chameleon
satisfyingCi ̸= Cj as ‘using amin edge,’which takesmin_edge(i, j) seconds.

66

J. Joy Of Sleep

Observation

– There is no need to use themax edgemore than twice.

– Ifmax edge is used consecutively to reach fromone vertex to another, usingmax edge

only once fromstart vertex to end vertex ismore efficient.

– Is it necessary to use it once?

– Let’s denote the currently awake chameleon as the i-th chameleon, and the
chameleon to be awakened at the end as the j-th chameleon.

– IfCi ̸= Cj , usingmin_edge(i, j) is faster than using themax edge at least once.

Therefore, there is no need to use themax edge.

J. Joy Of Sleep

67

Observation

– AssumeCi = Cj , and both themax edge andmin edge are used at least once. Since

themin edge is used, the chameleonmust consist of at least two different colors. For

the k-th chameleon,whereCi ≠ Ck, using only themin edge(min(i, k)+min(k, j)) is
faster or takes the same time as using both themax andmin edges. Hence, the case of

using both themax andmin edges does not exist.

– Therefore, themax edge is not used except oncewhen the 1st chameleonwakes up

theNth chameleon.

68

J. Joy Of Sleep

Optimization

– Min edge connecting (Xi,Yi) and (Xj ,Yj) could be separated into two edgeswith

weight of |Xi −Xj | and |Yi − Yj |. Let an edgewithweight |Xi −Xj |be an x-edge and
edgewith |Yi − Yj |be y-edge.

– A graphwhere every two chameleonswith different color are connectedwith a x-edge

has toomany edges. Let’s construct an equivalent graphwhich has less edges.
– Consider i-th, j-th, and k-th chameleonswhereCi ̸= Cj ,Cj ̸= Ck andXi≤Xj≤Xk.

Since |Xi−Xk| = |Xi−Xj |+ |Xj −Xk|wedon’t require a x-edge connecting i and k.
– Sort chameleonswith it’s x value and cluster adjacent chameleonswith it’s color.
Making a x-edgewith chameleons in two adjacent cluster would be enough.

69

J. Joy Of Sleep
Optimization

– For two cluster of size p and q, naively adding x-edgeswould need pq edges. By

adding a dummynode between two cluster and connecting chameleons in clusters

with the dummynodewith a x-edge,we only need p+ q edges.

– This only requires atmost 4N x-edges.

J. Joy Of Sleep

70

Optimization

– Similarly doing for y edge,we can construct a graphwith atmost 5N nodes and 8N

edgeswhich is equivalent to a graphwithmin edges between chameleonswith

different colors.

– Let’s add amax edge between chameleon 1 and chameleonN if two chameleons

have the same color.

– We can easily solve the problemusing dijkstra algorithm.

71

L. Lottery
dynamic_programming, math

L. Lottery

72

– If there are several albums that have same cost, we can purchase the album that gives

themost lottery tickets.

– We can consider onlymax(Ai) albums.

L. Lottery

73

– LetT be a list of albumyoubought.

– The expected cost can be calculated as∑
i∈T

Ai +R
S +

∑
i∈T Bi∑

i∈T Bi
=

∑
i∈T

Ai +
RS∑
i∈T Bi

+R.

– Denote f(t) asmax(
∑
i∈T

Bi)when
∑
i∈T

Ai ≤ t.

– Our goal is to solveminimumvalue of t+
RS

f(t)
.

L. Lottery

74

– Let pth albumhave themaximumvalue of
Bi

Ai
. LetK =

Bp

Ap
.

– We can observe that f(t) ≤ Kt.

– Alsowe can purchase ⌊ t

Ap
⌋ copies of pth album. Therefore

f(t) ≥ ⌊ t

Ap
⌋Bp ≥ (

t

Ap
− 1)Bp = Kt−Bp

L. Lottery

75

– t+
RS

f(t)
≤ t+

RS

Kt−Bp
=

Bp

K
+ t− Bp

K
+

RS
K

t− Bp

K

= Ap + t−Ap +
RS
K

t−Ap

– Let t = ⌊
√

RS

K
+Ap⌋.

– t+
RS

Kt−Bp
is approximatelyAp + 2

√
RS

K

– Nowwehave bounded t toAp + 2

√
RS

K
+M , whereM is a constantmade by floor

operation on t.

L. Lottery

76

– Let’s use dynamic programming for solving f(t). This can be solved in a knapsack
dynamic programming fashion.

– Time complexitywould beO(max(t)×N).

– We have observed thatN ≤ max(Ai) andmax(t) ≤ 2

√
RS

K
+Ap +M . Thiswould

be enough to pass through time limit.

77

M. Make It Regular
dynamic_programming

M. Make It Regular

78

– Whenwe fixS, it is optimal to let open brackets be on the left side and closed brackets

to be on the right side.

– Let’s observewhich brackets are flipped. On the left side, some closed brackets are
flipped into open brackets. On the right side, someopen brackets are flipped into

closed brackets.

M. Make It Regular

79

– Define a proper bracket prefix as a bracket sequencewhere for every prefix, there are

an equal or greater number of open brackets than closed brackets.

– Define dp1i,j as the number of possible choices of j closed brackets and someopen

brackets from 1th bracket to ith bracketwhere by flipping chosen closed brackets into

open brackets, prefix [1, i]becomes a proper bracket prefix.

– Define dp2i,j similarly for suffixes. It will be the number of possible choices of j open

brackets and some closed brackets from ith bracket to 2N th bracketwhere by flipping

open brackets, suffix [i, 2N]becomes a proper bracket suffix.

– Both dp1 and dp2 can be easily solved inO(N2).

M. Make It Regular

80

– For eachS, let iS be the number of flipped open/closed brackets, and xS be the index

of first closed bracket inS after swapping is done.

– For every (x, i), let’s count the number ofS where iS = i and xS = x.

M. Make It Regular

81

– If xth bracket is an closed bracket, possible choices ofS would be dp1x−1,i × dp2x+1,i.

– Otherwise, we should flip the xth bracket. If flipping i closed brackets in [x, 2N]does

not result in a proper bracket suffix, the result would be 0. Otherwise possible choices

ofS would be dp1x−1,i × dp2x+1,i−1.

M. Make It Regular

82

– Note thatwe did not count caseswhere no brackets are flipped. If the sequence itself

is a proper bracket sequence, the answerwould be 22N − 1. Otherwise, we do not

need to count such case.

	A. Add, Remove, Transform
	B. Big Sieve Game
	C. Catch The Flea
	D. Decorative Birds
	E. Excellent HLD
	F. Full Irreducibility
	G. Good triangle
	H. Holes in Queue
	I. Isn’t It Beautiful?
	J. Joy Of Sleep
	L. Lottery
	M. Make It Regular

