IV Kyb6ok Ykpainu 3 mporpaMyBaHH:I
2025

Contest 2, divl

Official Solutions

A. Add, Remove, Transform

ad_hoc, math

A. Add, Remove, Transform

Observation: Fora subgraph isomorphic to a path of length 6, you can reorder the
vertices in any order.

A. Add, Remove, Transform

1-4/3-6 swap We can swap any two vertex

A. Add, Remove, Transform

— For tree of 6 vertices, there are 6 non-isomorphic trees.
— Five are shown in the picture, and one is a star graph.

— We have shown that a tree of 6 vertices which is not a star graph could be a line graph
by some sequence of operations, and any line graph could be reordered.

— Therefore any tree of 6 vertices could be any tree of 6 vertices by a sequence of
operations when both trees are not a star graph.

A. Add, Remove, Transform

— First, let’s make the diameter of tree less than or equal to 4.

— Ifthere is a path of length 3 starting from vertex 1, remove edges at the path and add
edges by operation. By this operation, degree of 1 increases by 1.

— Therefore after some operations there is no path of length 3 starting from vertex 1,
resulting in a tree with diameter less than or equal to 4.

A. Add, Remove, Transform

— If diameter is less than or equal to 3, we are done. Let’s assume that diameter of a tree
is4.

- Let(1,2, 3,4, 5) be a path of length 4.

- Let G1, G2, G3 each be a partition of components of G \ {1, 2, 3,4, 5} where
components of G; is connected withi + 1in G.

A. Add, Remove, Transform

— Since diameter of tree is less than or equal to 4, there is no edge in G; and G3.

A. Add, Remove, Transform

— We canremove edgesin G,.

A. Add, Remove, Transform

— We can move vertices in G5 to G1.

A. Add, Remove, Transform

- If |G| = 5, by removing edges (2, 3), (3,4), (4,5) and adding (2, 4), (3,5), (2, 5), we get
atree of diameter 3.

— Otherwise, G \ {1,2,3,4,5} isnotempty. Let v beany vertexinG \ {1,2,3,4,5}.

A. Add, Remove, Transform

— We could move 5 into Gs.

— Now we have a tree where G5 has no edges and GG3 has no vertices. This is a tree of
diameter 3.

B. Big Sieve Game

greedy, number_theory

13

B. Big Sieve Game

Definition
— Let’s define an operation as an i-operation that increases or decreases p; by 1 for all j
divisible by .

B. Big Sieve Game

Observations

— The value of p; is determined solely by 1-operation. There is no need for 1-operation
thereafter.

— Foraprime number ¢, the value of p, is determined by 1-operation and g—operation.
Similarly, there is no need for 1-operation or g-operations thereafter.

— In general, for k, p;. is determined once all d-operation are completed for all divisors d
of k.

B. Big Sieve Game

Greedy Strategy

— Based on the observations, the optimal strategy is to prioritize determining p,, before p,,
whenalbanda < b.

— Therefore, simply iterating through i = 1. .. n in order and using i—operation to
immediately set p; to 0 repeatedly achieves the minimum value required by the
problem.

C. Catch The Flea

graph

C. Catch The Flea

— Let’s solve the problem in reverse.

— Forany given cell, if it is possible to escape outside the trap by jumping K cells in its
weak direction, it is considered an escapable cell.

— The cells reachable from escapable cells, i.e., R within K cells to the left, L within K cells
to the right, D within K cells upwards, and U within K cells downwards from the
escapable cell are escapable cells.

— Therefore, we can recursively find escapable cells.

C. Catch The Flea

— To optimize the runtime, we pre-process the nearest R on the left, L on the right, D
upwards, and U downwards for each cell.

— Due to the tight time limit, managing connection information with vectors might lead to
atime limit exceeded.

— Since each cell requires at most 4 connection information, it can be solved using
arrays.

D. Decorative Birds

dp, sweeping, segment_tree

20

D. Decorative Birds

First, we can plot the situation on a 2D plane.

Consider a plane with z-axis denoting time and y-axis denoting speed of geese.
Then aline segment of length L parallel to z-axis represents a goose.

21

D. Decorative Birds

Consider a set of segments that can be selected.
(=aset of geese that can be feeded)

Let’s observe properties of sets which can be selected.

22

D. Decorative Birds

In this picture, green segments cover the red segment.

23

D. Decorative Birds

Every selected segment shouldn’t be covered by segments which are not selected.
Satisfying this condition for all segments is equivalent to saying that the set is valid.

Idea. Consider a histogram.
If we choose every segment which is not fully contained in a histogram, they form a
valid set. (The formal proof is simple, so it is omitted.)

24

D. Decorative Birds

An example of a set generated by a histogram

25

D. Decorative Birds

Idea. Consider a histogram.

Every histogram generates a valid set of segment.
Conversely, every valid set of segments has a histogram generating it.
The area of histogram would be the union of areas under a segment not in the set.

26

D. Decorative Birds

27

D. Decorative Birds

28

D. Decorative Birds

Idea. Consider a histogram.

The conclusion of this idea is that we can consider every valid set by considering
histograms that can be drawn.
Let’s think about a dynamic programming algorithm on constructing histograms.

29

D. Decorative Birds

By compressing coordinates, we only have O (V) points, both z-value and y-value.

D; ; := maximum sum of weight of segments in a histogram which is drawn for x value
[0, 7] and the height of the i-th unit segment is .

Here, a segment is in a histogram drawn for x value [0, ¢] if every point on a segment
having x-value less than i is in the histogram.

30

D. Decorative Birds

i i+1 i i+1

Here green segments are related to F; ; and red segments are related to A, ;.

31

D. Decorative Birds

Dit15 = 1g]1€a<XN(Di,k +max(Fip1x — Fit15,0)) + Aiv1g

- F;; :=sum of weight of segments which is under j and covers both i — 1-th and i-th
unit segment.

- A;; :=sum of weight of segments which appears at i-th unit segment and is over ;.

...But this DP is wrong!

32

D. Decorative Birds

33

D. Decorative Birds

One segment can be calculated multiple times!
Now we should use the property that every segment has same length, L.

Let’s limit the length of a "roof’ at least L.
The ’roof’ of a histogram means an interval having local maximum.

Since every segment has same length, any segment is only calculated at most once.

By ’sweeping down’, we can show that every valid set can be generated by only using
such histograms.

34

D. Decorative Birds
To limit the length of roofs, we can divide the DP into two tables, Uphill part / Downhill
part.

Uphill part has arestriction that £ < j must be held.
Downhill part has a restriction that j < k& must be held.

Propagation from uphill to downhill must be delayed for length L.
Propagation from downhill to uphill can be done directly.

Note that at propagation from uphill to downhill, delayed length means z-value, not the
number of unit segments.
The coordinates are compressed.

35

D. Decorative Birds

Now we got an O(N?) solution. We need to improve this method.
Consider histograms made by sweeping down a set.
We can cover all sets by only such histograms.

Idea. Every height changing only occurs on start/end of segments.

More precisely, the histogram jumps up to a starting point of a segment and falls down
from a ending point of a segment.

The number of such pointsis O (V).

36

D. Decorative Birds

Use segment trees to store DP.
At a certain z-value, a segment tree holds a row of a DP table.
Uphill part can implemented by a simple lazy max segment tree.

Uij = I}?g;?(Ui—l,k) + Aij

By the previous idea, k < j case only occur on a starting point and this can be done by
arange max query. Most of cells maintain its value.

For A, total segment appearing events occurs N times and each appearing can be
done by alazy addition operation.

37

D. Decorative Birds

Downhill part is very complicated and requires sophisticated data structure technique.
D;; = I;lf-?(Di—l,k +Fi k) — Fio;+ Aij

By the previous idea, j < k case only occur on an ending point.
An ending point spreads the propagation by doing a range max update query.
But the F'termis very annoying...

38

D. Decorative Birds

If £ = j, F'term has no effect.
Maintained values without changing height can be tackled same as uphill.

Idea. Range updates of F occur O(N) times.

Appearing and disappearing of segments changes F' for somerange, [y, N].

So we can manage a row of F' by alazy segment tree.

39

D. Decorative Birds

The spreading is done by applying D; = maxz(D;,x + Fj)and D; = D; + a queries.
To handle propagation from downhill to uphill, we need to do some range max query
for D.

So, we have to do...
- Givenz,y, D; = max(Dj, x + Fj)forj € [1,y]
- Given f,y, F; = F; + fforj € [y, N]
- Givena,y,Dj = Dj +aforj € [1,y]
- Giveny, getr;gga;;(Dj)

40

D. Decorative Birds

Store 5 values foreachnode: D, F, z, f,a
They mean lazy queries, D = max(D,z + F) +aand F+ = f.
D isrange max of D; and F'is range max of F;.

Two lazy values can be added:
Applying 2, f2,a2t0 D, F', x1, f1,a1
=> maX(D’F + 372) + CLQ,F + fg,maX(CIfl - f27$2 - a1)7f1 + f2aa1 + a9

OK, it works for every queries we want!

4

D. Decorative Birds

Our last problem is the propagation from uphill to downihill.

However, it’s easy since the height never be changed!

Just delay the update and calculate sum of A for length L by using a fenwick tree or
structure you want. It’s just 2D sum query.

Finally we simulated O(N?) DP solution in O(NlogN) with a segment tree.
You might need to consider some details to implement. Good Luck!

42

E. Excellent HLD

heavy_light_decomposition

43

E. Excellent HLD

— The problem can be viewed as increasing the weight of edges in a path for each query
and solving the sum of weight of heavy edge for every vertex.

— Observation: For () queries, number of changes of heavy edge is bounded to
4QlogN .

44

E. Excellent HLD

— Define hld-heavy edge as a heavy edge in heavy light decomposition, where the child
incident to heavy edge has the biggest subtree size. Define hld-light edge as edges
that are not hld-heavy edge.

— When we add weight to a path, we can observe that heavy edge either changes to the
edge in the path or it does not change.

- Let’s assume that heavy edge changes to the edge on a path for every vertex on a
path.

45

E. Excellent HLD

— When we follow the hld-light edge in upward direction, size of subtree doubles.
Therefore there are at most logV hid-light edge in a path from a leaf vertex to root
vertex.

— There are at most 2/log N hld-light edges on a path. Therefore there are at most
2QlogN changes where heavy edge changes into hid-light edge.

— For each vertex, there are more changes where heavy edge changes into hid-light
edge than heavy edge changes into a hid-heavy edge. So the number of heavy edge
change is bounded to 4QlogN.

46

E. Excellent HLD

— Since the number of heavy edge change is bounded, let’s try to find the change of
heavy edge fast enough.

— For each query, by using heavy light decomposition, we can divide the path on a tree
into log N chains.

— For each chain, use segment tree to store (weight of hid-heavy edge) - (maximum
weight of hld-light edge) for every vertex. By maintaining such value for vertices that
have heavy edge on hld-light edge, we can efficiently find the change of heavy edge
from hid-light edge to hid-heavy edge in O(logN') time for each change.

— Total complexity is O((N + Q)log®N).

47

F. Full Irreducibility

ad_hoc

F. Full Irreducibility

— Denote D; = {Py, P»,-- -, P;}. For P to be anirreducible permutation,
D; #{1,2,--- ,i} shouldsatisfyfor1 <i < N — 1.

- When ith element and 7 + 1th element is swapped, D; changes and D; remains the
same for every j # i.

- Foreveryindicesiwhere D; = {1,2,--- ,i}, swapith elementand i + 1th element.
The order does not matter.

49

G. Good Triangle

ad_hoc, segment_tree

50

G. Good Triangle

— Let’s try to find a simpler way to define whether there is a point having same distance
from given three points.

— Acircle in manhattan distance is 45 degree rotated square. Let’s rotate the grid 45
degrees.

— If coordinates are monotone, there is no square that passes through three dots.
Otherwise there always exists such square.

— By using segment tree, we can find the number of three dots that have monotone
coordinate.

51

H. Holes in Queue

ad_hoc, segtree, two_pointer

52

H. Holes in Queue

- Let’s define f () (x) as the number on the xth index after d pop operations.
— Then the following properties hold:
* fOU) =2
© fD(x) = FV(f ()
* f(z) =z + (#of deletion points < x)
- Naively implementing this function will lead to more than O(d) time complexity per
query.

53

H. Holes in Queue

- Let’ssort (A[1], A[2], ..., A[N]), and assume A[0] = 0, A[N + 1] = cc.

~ ltisclearthatforallz < A[1], /¥ (z) = =.

— So we will consider only s greater than or equal to A[1] further on.

— Then we can modify the property as:
* f(z) =z +i,where A[i] <z < Ali + 1]

— And it can be further improved to:
o fry=a+dxiwhereAli] <z <z+(d—1)xi<Afi+1]

— Therefore the critical part of this problem is to figure out a clever way to manage cases
whereboth A[i] <z < Ali+1],and A[i + 1] < z + 4.

54

H. Holes in Queue

— The main idea is to partition the whole queue into ’blocks’, such that for all the elements
from a left block, their f(x) will be placed in an adjacent right block.

— We can do this with the following simple algorithm:
e Start from A[1]. Theinitial block length is 1.

Repeat partitioning with length 1 until we meet A[2].

Increment the block length by 1.

Repeat partitioning with length 2 until we meet A[3].

Increment the block length by 1.

55

H. Holes in Queue

— This is an example where the deletion pointsare 1, 3, 8, 10.

* (1)(2)345678910111213141516 17
(2)(34)(56)7891011121314151617
(2)(34)(56)(789)10111213141516 17
(2)(34)(56)(789)(10111213) (141516 17)

(1)
(1)
(1)

56

H. Holes in Queue

— You can notice that the problem is now much easier.
- Let’s define:

* [en(b) =(length of the bth block)
* g(b,1) =(ith element of the bth block)
— Then we can rewrite f to:
‘ g(b+1,1), iflen(b) ==len(b+1)
* flgbi)) = , .
g(b+1,5), otherwise

e where the above j is the ith non-deletion index of the b + 1th block.

¢ Note that at least 1 deletion index exists in the 2nd case.

57

H. Holes in Queue

— Now the whole problem comes down to finding the appropriate j, where
* fPlg(b,i)) = g(b+ D,)

— Let’s further define:
o R[i] = j,where f¢(A[i]) = g(_,), when dis sufficiently large

— We can calculate all R[i|s with proper segment tree operations.

58

H. Holes in Queue

We can calculate the appropriate j using sequence R[1], R[2],..., R[N].

Let’s try to calculate 2 (g(b,1)).
First find R[k|, which is the ith smallest element among R][1], R[2], ..., R[len(b)].

Then j is the # of elements smaller or equal to R[k] among R[1], R[2], ..., R[len(b+ D)].

— One can prove it directly easilly, so we skip the proof in this section.

59

H. Holes in Queue

— Since D is constant, we can conduct a two pointer of the index of blocks band b + D
and answer the queries offline.

— Keep in mind that the number of blocks may be large as 10'8, but the number of blocks
with distinct lengths don’t exceed NV, and the block length monotonically increases.
One needs careful implementation to bound the time complexity.

— With segment tree similar to the one we used to find R]i]s, we can do both operations
inO(logN).

- The total time complexity is O((IV 4+ Q)logN + QlogQ), due to sorting and segtree
operations.

60

H. Holes in Queue

— Instead of using two pointers, we can also use 2D data structures such as persistent
segment trees.

— With this implementation, we can also process queries with different Ds with the same
time complexity, but much slower due to high constants.

61

|. Isn’t It Beautiful?

ad_hoc

62

l. Isn’t It Beautiful?

- LettheithbitofzrbeOand0,1,--- ,i — 1thbitof z be 1. Then x& A; could not be 2,
— Soitis optimal for bits higher than ith bit to be 0. Therefore = = 2¢ — 1 for some .

— By bruteforcing through 0 < i < 20, we can get the answer.

63

J. Joy Of Sleep

graph

J. Joy Of Sleep

— First, the time it takes for the i-th chameleon to wake the j-th chameleon is
maz(|X; — Xjl, |Y; — Y;|) if the colors of the two chameleons are the same, and
min(|X; — X;|,|Y; — Y;]|) if the colors are different.

’

- Let’s define the event of the i-th chameleon waking the j-th chameleon satisfying
C; = C; as ‘using amax edge,” which takes max_edge(i, j) seconds.

— Similarly, let’s define the event of the i-th chameleon waking the j-th chameleon
satisfying C; # C; as ‘using a min edge,’ which takes min_edge(i, j) seconds.

65

J. Joy Of Sleep

Observation

— There is no need to use the max edge more than twice.

If max edge is used consecutively to reach from one vertex to another, using max edge
only once from start vertex to end vertex is more efficient.

Is it necessary to use it once?

Let’s denote the currently awake chameleon as the i-th chameleon, and the
chameleon to be awakened at the end as the j-th chameleon.

- If C; # C}, using min_edge(i, j) is faster than using the max edge at least once.
Therefore, there is no need to use the max edge.

66

J. Joy Of Sleep

Observation

- Assume C; = (;, and both the max edge and min edge are used at least once. Since
the min edge is used, the chameleon must consist of at least two different colors. For
the k-th chameleon, where C; # C}, using only the min edge(min(i, k) + min(k, j)) is
faster or takes the same time as using both the max and min edges. Hence, the case of
using both the max and min edges does not exist.

— Therefore, the max edge is not used except once when the 1st chameleon wakes up
the Nth chameleon.

67

J. Joy Of Sleep
Optimization

- Min edge connecting (X;, Y;) and (X, Y;) could be separated into two edges with
weight of | X; — X ;| and |Y; — Y}|. Let an edge with weight | X; — X ;| be an x-edge and
edge with |Y; — Y;| be y-edge.

— A graph where every two chameleons with different color are connected with a x-edge
has too many edges. Let’s construct an equivalent graph which has less edges.

— Consider i-th, j-th, and k-th chameleons where C; # C, C; # Cj, and X;<X;<X,.
Since | X; — X| = |X; — X;| +|X; — X}| we don’t require a x-edge connecting i and k.

— Sort chameleons with it’s x value and cluster adjacent chameleons with it’s color.
Making a x-edge with chameleons in two adjacent cluster would be enough.

68

J. Joy Of Sleep
Optimization

— Fortwo cluster of size p and ¢, naively adding x-edges would need pq edges. By
adding a dummy node between two cluster and connecting chameleons in clusters
with the dummy node with a x-edge, we only need p + ¢ edges.

— This only requires at most 4V x-edges.

chameleons

69

J. Joy Of Sleep

Optimization

— Similarly doing for y edge, we can construct a graph with at most 5NV nodes and 8 NV
edges which is equivalent to a graph with min edges between chameleons with
different colors.

- Let’s add a max edge between chameleon 1 and chameleon N if two chameleons
have the same color.

— We can easily solve the problem using dijkstra algorithm.

70

L. Lottery

dynamic_programming, math

71

L. Lottery

— Ifthere are several albums that have same cost, we can purchase the album that gives
the most lottery tickets.

— We can consider only max(A;) albums.

L. Lottery

— Let T bealist of album you bought.

— The expected cost can be calculated as

>4 +RS+Z’ET ZA+

i€T Yier Bi €T Yier B

— Denote f(t) asmax() _ B;)when > A; <.
ieT ieT

RS

— Our goal is to solve minimum value of t + ——.

f(t)

+ R.

L. Lottery

P

B; B
— Let pth album have the maximum value of - Let K = —+.

A; A,
— We canobserve that f(¢) < Kt.
— Also we can purchase LALJ copies of pth album. Therefore
P
t t

F0) 2 Ly 1By = (f ~ 0By = Kt = B

74

L. Lottery

RS RS B B k5 1S
—t4 <t =P 2 K —A +t— A+ —E
+f(t)_+Kt—Bp K K+t_% rt p+t—Ap
/RS
—Lett:L ?‘f‘ApJ
RS . : RS
- t+mlsapprOX|matelyAp+2 a

/RS .
— Now we have bounded tto A, + 2 a + M, where M is a constant made by floor
operation on t.

75

L. Lottery

— Let’s use dynamic programming for solving f(¢). This can be solved in a knapsack
dynamic programming fashion.

— Time complexity would be O(max(t) x N).

— We have observed that N < max(A;) and max(t) < 24/ %S + A, + M. This would
be enough to pass through time limit.

M. Make It Regular

dynamic_programming

77

M. Make It Regular

— When we fix S, it is optimal to let open brackets be on the left side and closed brackets
to be on the right side.

— Let’s observe which brackets are flipped. On the left side, some closed brackets are
flipped into open brackets. On the right side, some open brackets are flipped into
closed brackets.

(NDOC= (CO))

M. Make It Regular

Define a proper bracket prefix as a bracket sequence where for every prefix, there are
an equal or greater number of open brackets than closed brackets.

Define dp1; ; as the number of possible choices of j closed brackets and some open
brackets from 1th bracket to ith bracket where by flipping chosen closed brackets into
open brackets, prefix [1, i] becomes a proper bracket prefix.

Define dp2; ; similarly for suffixes. It will be the number of possible choices of j open
brackets and some closed brackets from ith bracket to 2 Nth bracket where by flipping
open brackets, suffix [i, 2)NV] becomes a proper bracket suffix.

Both dp1 and dp2 can be easily solved in O(N?).

M. Make It Regular

— Foreach S, let i g be the number of flipped open/closed brackets, and x s be the index
of first closed bracket in S after swapping is done.

— Forevery (z,1), let’s count the number of S whereig = iand x5 = z.

()OO=C00)))(

is=1xs=6

80

M. Make It Regular

— If xth bracket is an closed bracket, possible choices of S would be dpl,_1; X dp2;41.;-

— Otherwise, we should flip the zth bracket. If flipping i closed brackets in [z, 2N] does
not result in a proper bracket suffix, the result would be 0. Otherwise possible choices
of S would be dplr_l,i X dp2$+1,i_1.

81

M. Make It Regular

— Note that we did not count cases where no brackets are flipped. If the sequence itself
is a proper bracket sequence, the answer would be 22V — 1. Otherwise, we do not
need to count such case.

82

	A. Add, Remove, Transform
	B. Big Sieve Game
	C. Catch The Flea
	D. Decorative Birds
	E. Excellent HLD
	F. Full Irreducibility
	G. Good triangle
	H. Holes in Queue
	I. Isn’t It Beautiful?
	J. Joy Of Sleep
	L. Lottery
	M. Make It Regular

