
Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 2

Problem A. Adding Integers
De�ne a0 = n and aq+1 = 0.

De�ne bi = ai−1 − ai ≥ 0.

Note that

q+1∑
i=1

bi = n.

Look at
(
n
a1

)
·
(
a1
a2

)
· . . . ·

(
aq−1

aq

)
=

(b1+b2+...+bq+1

b2+...+bq+1

)
·
(b2+b3+...+bq+1

b3+...+bq+1

)
· . . . ·

(bq+bq+1

bq+1

)
. This is the number of ways

to color elements in q + 1 colors such that there are bi elements of color i.

Turns out that f(q) is simply the number of ways to color n elements into q + 1 colors.

So f(q) = (q + 1)n.

Problem B. Bottles
We will consider these permutations of all bottles (e+p+w)!

e!w! , since the order of poisonous bottles matters.

We will count how many of those result in the elf being alive.

Consider we have some sequence of poisonous bottles and bottles with water. For each such sequence,

there is the �rst �poison� event that happens after some time x. It means that if we try all ways to add

elixir bottles to that sequence, the ways that result in at least one elixir bottle being among the �rst x
bottles in the sequence keep the elf alive.

So if we count for each x, f(x) � how many sequences of bottles out of (p+w)!
w! consisting of poisonous

and water bottles that have the �rst event happening right after element x. Then the answer is
(e+p+w)!

e!w! −
∑

x f(x)×
(
e+p+w−x

e

)
, where

(
e+p+w−x

e

)
� the number of ways to place all elixir bottles in

the sequence after position x, hence killing the elf.

How to calculate f(x). Let's calculate g(x) � the number of sequences of poisonous and water bottles,

such that the event is not happening before x. It means f(x) = g(x) − g(x + 1). Consider all poisonous
bottles that can poison before x: such i, so that 1 + i + t − 0.5 < x, so i ≤ x − t − 1. So there are

m = min(x − t − 1, p) such bottles. Other bottles can be in any order. Bottle 1 has to be at positions

from x− t up to the end p+w, so there are p+w− (x− t)+ 1 ways. Bottle 2 has to be at positions from

x− t− 1 up to the end, but one of the positions is taken by bottle 1, so also p+w− (x− t)+ 1 ways, and

so on. So there are (p + w − (x − t) + 1)m ways to place these m bottles, and (p+w−m)!
w! to place others.

So g(x) = (p+ w − (x− t) + 1)m (p+w−m)!
w!

Problem C. Counting Orthogonal Pairs

The angle of a regular polygon in degrees is (n−2)·180
n .

Consider all diagonals; there are n − 3 diagonals from the vertex, and it divides into n − 2 angles. Each

angle is equal and of (n−2)·180
n(n−2) = 180

n degrees. The angle between two line segments coming from the vertex

is 180 · k
n for some 1 ≤ k ≤ n − 2. 180 · k

n = 90 only when k
n = 1

2 , and for integer k and n, this only
happens when n is even, so k = n

2 , and there are n
2 − 1 ways to choose a pair of segments.

When n is odd, the answer is 0.

When n is even, the answer is n ·
(
n
2 − 1

)
.

Problem D. Divine Tree
Count the number of G and B coins, let them be g and b, respectively.

Note that because the size is odd, after the type 2 operation, we will de�nitely know which of the two

trees has G coins and which has B coins because their sizes would di�er, and their sizes have to be g and

b, respectively.

Also note that if we have chosen the edge for the type 2 operation, the number of times for each edge to

Page 1 of 4



Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 2

be used in the type 1 operation is �xed; we can just count it. For each edge, we can see how many G and

B coins are at each side of the edge and how many G and B coins there have to be at each side of the

edge. This imbalance is the number of times we need to use the edge. You can prove that you can always

make the type 1 operations so that every time you use an edge, the imbalance decreases for it, and �nally

get 0 imbalance for all edges.

Make a tree rooted at some vertex and get all subtrees of size g and all subtrees of size b. For every edge

that you can use in the type 2 operation, either the subtree of size g or the subtree of size b has this edge
coming from its root. Store information about subtrees of size b and g independently and in a similar way,

and make updates independently. When getting the query answer, get for both and take the minimum.

Now consider only one case: we have subtrees of size g, and we want for each of them to store and update

the cost to make type 1 operations, to afterwards make type 2 operations on the edge coming from its

root. Note that these subtrees are disjoint.

Let's start with all weights equal to 0 and make an update operation for an edge weight. Consider some

edge uv is updated, d is added to its weight, and v is more distant from the root than u. And consider

a single subtree A of size g. There are three cases: if an edge is in A, if A is in the subtree of v, and
otherwise.

1. If an edge uv is in A, then A's value will change by the number of B vertices in v's subtree times d;

2. If A is in the subtree of v, then A's value will change by the number of G vertices outside v's subtree
times d;

3. Otherwise, A's value will change by the number of G vertices in v's subtree times d.

We can update these values for all trees simultaneously by ordering them in the order of DFS visiting

them. There is only one subtree of size g for case 1, and cases 1 and 2 can't happen at the same time.

Create a data structure that supports range addition and range minimum, and make an update in log n
time.

Problem E. Eve, Adam and Three Integers
If among the two consecutively written numbers there are two numbers of the same parity and two

numbers of di�erent parity, it follows that one of the edge numbers has the same parity as the middle

number, while the other has a di�erent parity. Thus, the parity of the middle number does not matter,

and it is necessary to check that a and c have di�erent parity (for example, by adding them and checking

that the sum is not divisible by two).

Problem F. Fibonacci Triangles
Let us consider an isosceles triangle with sides equal to Fibonacci numbers. Let the longest side be fn.
Then the second longest side does not exceed fn−1, and the third side does not exceed fn−2. However,

since fn = fn−1 + fn−2, such a triangle either does not exist or is degenerate.

Therefore, triangles with sides equal to Fibonacci numbers can only be isosceles. Let us have two sides of

length fk, and we will calculate what value the third side can take. It is obvious that all numbers from f1
to fk are suitable. We also note that for k > 1, fk+1 < 2 · fk. But fk+2 = fk+1 + fk > f2k, meaning that

for k > 1 there is another triangle with the third side equal to fk+1; there are no more triangles.

Thus, when moving from n to n+ 1, n+ 2 triangles are added (n+ 1 triangles with sides fn+1, fn+1, fi
for i from 1 to n+ 1, and also a triangle with sides fn, fn, fn+1).

Considering that for n = 1 the answer is 1 (only the equilateral triangle), and applying the formula for

the sum of an arithmetic progression, we �nd that the answer is n(n + 1)/2 + n − 2, or n(n + 3)/2 − 2.
Given the speci�ed range for n, the answer �ts well within the long long type.

A dynamic programming solution does not work for the given range of n due to time and memory

constraints.

Page 2 of 4



Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 2

Problem G. Game of Voleyball
The main part of the solution to this task is the implementation of the function addPoints, which adds

a point to the team passed as the �rst parameter. The opposing team is passed as the second parameter.

In the function, the number of points for the �rst team is increased, and then it is checked whether this

leads to the end of the set. If the number of points for that team is now greater than 25 (or 15 if the score

is 2:2 in sets) and the di�erence compared to the other team is at least 2, team A has won the set, and

the scores of both teams are reset to 0 due to the start of the next set.

Problem H. Heroes and Illusions
Let's say positions of real heroes are a1, a2, ..., am−1, also add a0 = 0 and am = n + 1. Consider values
bi = ai − ai−1, the lengths of segments between consecutive heroes. The segment [l, r] contains odd

number of heroes, if its ends belongs to segments with di�erent parity, so the number of such segments is

(a1+a3+a5+ ...) ·(a2+a4+a6+ ...) = k. Let's say x = (a1+a3+a5+ ...), then we have x ·(n+1−x) = k.
From this equation we can �nd x, and then we have standard problem of counting the number of partitions

of x and n+ 1− x.

Problem I. Internet Connection Stability
First, let's �deal with� the stations with an odd number of connections by pairing these stations. Since

the sum is even, there are an even number of them, and it will be possible to connect them. Thus, only

stations with an even number of �free� connections remain.

If the station m with the highest number of connections am is not greater than the sum of all other ai,
then it is possible to do without any type 2 connections at all. We will prove this by induction on the

number of stations.

For two stations, the statement is obvious: the property holds only when the stations have an equal

number of connections; in this case, we assume that all connections were of type 1 and connected di�erent

stations.

Assume the statement is true for all k < n. Then we take the station with the highest number of

connections and start �marking� one connection with the station with the highest number of connections

among the remaining ones until the number of �free� connections for this station is no longer among the

highest (this we can always do, since ai is the station with the highest number of connections). After that,

we switch to establishing connections with other stations for which the number of �free� connections is

maximal, also until this station is no longer among the highest, and so on, until all connections for the

considered station are exhausted. Thus, we are left with n − 1 stations, and the di�erence between the

highest ai and the next highest, by construction, does not exceed 1, meaning that the station with the

higher number of connections has a value of ai that is not greater than the sum of the connection counts

of the other stations, thus the transition is proven.

So if am is not greater than the sum of all other ai, then the answer is 0.

If am for the station with the highest number of connections exceeds the sum of all other values, then we

will establish all connections for each of the remaining stations with ai, leaving am −
∑
i ̸=m

ai connections

unused, which will inevitably be type 2 connections. Dividing this di�erence by 2 gives us the answer.

Problem J. Jumping Game
Consider a more general problem, where we have the undirected graph G and a token initially placed

in vertex s. Players take turns moving the token, and the token cannot visit the same vertex twice. If a

player cannot move, they lose.

This is a well-known problem, connected to maximal matchings. In particular, it's easy to prove that the

�rst player loses i� there is a maximal matching that doesn't cover vertex s.

Now, in our problem, we have a very speci�c graph. The intuition suggests that for the large board there

Page 3 of 4



Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 2

is always some perfect (or almost perfect, if the size is odd) matching. That's actually true. We just need

to solve some small cases manually. Namely, cases 1× x, 2× x, 3× 3, and 3× 5.

Problem K. Kangaroo On Graph
Make dynamic programming, calculate for each edge the value d[uv], the minimal cost of the path ending

with edge uv. To calculate this value, let's look at all possible previous edges xu. We need to �nd the

minimum d[xu] over all x, except the ones that form a forbidden triplet. We can store all the forbidden

x for each edge uv, and just iterate all edges xu in increasing order by d[xu], and pick the �rst one that

is not forbidden. Time O(n+m+ k log n)

Problem L. Lattice Sets
We will show that no �gure can have more than 4 axes of symmetry. If a �gure has an axis of symmetry,

then the side of the unit square must also map to some side. However, the angle between two segments

symmetric with respect to a line is equal to twice the angle between the segment and the line, and since

the segments can be either horizontal or vertical, the axes of symmetry can either also be horizontal and

vertical, or must be at a 45-degree angle to the grid lines. Since there can be no more than one axis of

symmetry in one direction, the number of axes cannot exceed 4.

Four axes of symmetry can be obtained when k = 4n+ 1 or k = 4n. In this case, the cells can be chosen

in the form of a cross or a cross with a punctured center, respectively. In other cases, the number of

axes of symmetry is two (two or three cells cannot be arranged so that there are more than two axes of

symmetry).

Page 4 of 4


