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Contest 5, Division 2

Problem A. Letters from Parts
Since horizontal sticks are only used in the letter A, the number of horizontal sticks h must equal the
number of A's. If the number of diagonal sticks is less than 2h, then it is impossible to assemble all
elements into letters. Otherwise, we have d − 2h diagonal sticks remaining. All of them must be used in
letters N, so if the number of vertical sticks is less than 2(d− 2h), then it is also impossible to assemble.
Otherwise, we have h letters A, d − 2h letters N, and b − 2(v − 2h) letters I. The answer will be the
minimum of these three numbers (since each �NAI� string requires one letter of each type).

Problem B. Build Well
First, we want to solve a simpli�ed version of the problem: given some bricks is it possible to build one
row. This problem is also known as the coin-change problem and can be solved in O(w·n

64 ) with bitsets or
in O(w · log(w)2) with �t (O(w · log(w)) is also achievable). Surprisingly, both of these approaches are
fast enough.

Now we can notice that if a solution that avoids bricks of length 1 exists, we are done. If such a solution
does not exist and no bricks of length 1 are available, we are also done.

At this point, we can assume that blocks of length 1 are available. Now we �nd a solution for both rows
simultaneously and we restrict ourselves to a solution where the second row has an o�set of one to the
�rst row. To do this we create gadget blocks that span two rows and have the following properties:

� the gadget has the same length in both rows

� the second row is o�set by 1

� the gadget creates no gaps in itself

� the �rst row does not start with a 1 block and the second row does not end with a 1 block i.e. any
pair of gadgets can be concatenated without creating gaps.

� a solution to the original problem exists if and only if a single row solution with the gadgets blocks
exists.

We can now observe that it is su�cient to create minimal gadget blocks i.e. those that use only one non 1
block. For each block wi of the original problem, we create wi−2 gadget blocks where the �rst row is a wi

block followed by some 1 blocks and the second row is some 1 blocks followed by a single wi block. With
these gadget blocks we can again solve the coin-change problem and check if it is possible to combine
gadgets to a total length w, if yes this is also a solution to the original problem, if no there is no solution.

The only problem remaining is: how can we create all those gadget blocks? For this, we observe that a
block of width w > 1 results in the gadget blocks of length w, ..., w− 2. Therefore, we can use a di�erence
array/pre�x sums to �nd all lengths for which we can build a gadget block in O(w).

There also exist other � more greedy � solutions. of the original input

Problem C. Centrifuge
Lets �rst calculate the answer for one leaf l.

First, we root the tree at vertex l. Then we do a tree dp, where dp[v] represents the expected liquid moving
upwards from below vertex v towards its parent.

dp[v] =

∑
u∈U dp[u]

max(1, deg[v]− 1)
+

a[v]

max(1, deg[v]− 1)
· size[v]− 1

n
+

a[v]

deg[v]
· 1
n

Where U are the children of vertex v, deg[v] is the degree of vertex v, and size[u] is the subtree size of u.

The sum has 3 parts: the liquid from below u, the liquid from u if the chosen center is below u, and the
liquid from u if the chosen center is u. For the root, the last term needs to be subtracted again since, if
it is chosen as center, the liquid will all �ow downwards (except for n = 1).
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To calculate the solution for all leaves, tree rerooting is needed.

Watch out as the initial water in each vertex could be larger than the modulo (especially for n = 1).

Problem D. In�nity Triples
Lemma: (n, a, b) is an in�nity triple i� b is coprime to n

gcd(a,n)

Proof : The triple (n, a, b) is an in�nity triple i� the equation

k−1∑
j=0

a · bj = a · b
k − 1

b− 1
≡ 0 (mod n)

has in�nitely many positive integer solutions k. Now, we want to get rid of the factor a on the left side.
Let g = gcd(n, a). Then, the above is equivalent to

a

g
· b

k − 1

b− 1
≡ 0 (mod n

g )

Since a
g and n

g are coprime, we can multiply both sides by (ag )
−1. Multiplying both sides by b− 1, we get

the equivalent congruence
bk − 1 ≡ 0 (mod ñ)

where ñ = (b−1)ng . If b and ñ are not coprime, the equation has no solution. Otherwise, there are in�nitely
many solutions (one way to see this is Euler's theorem, every multiple of φ(ñ) is a solution). Thus, (n, a, b)
is an in�nity triple i�

1 = gcd

(
b, (b− 1)

n

g

)
= gcd

(
b,

n

gcd(a, n)

)
We know three solutions for enumerating the triples with the above characterization:

Solution 1:

� Fix b = pe11 · . . . · peℓℓ and iterate it over all values ≤ m.

� Iterate over all values s = pf11 · . . . · pfℓℓ ≤ b which only contain prime factors from p1, . . . , pℓ. We
interpret s as the part of n which contains only prime factors of b.

� Count the number of a, n such that

1. s|a and a < b

2. s|n and n
s is coprime to b

The number of a is simply ⌊ b−1
s ⌋ and the number of n can be computed using PIE in O(2ℓ).

Solution 2:

� Let xd denote the number of triples (n, a, b) with 1 ≤ n ≤ m, 1 ≤ a < b ≤ m and gcd(b, n
gcd(a,n)) = d.

� Then, xd = yd −
∑⌊m/d⌋

k=2 xdk where yd is the number of triples with d | gcd(b, n
gcd(a,n)).

� A triple is only counted by yd when d | n. So let's iterate over all pairs d | n.

� A value a is valid i� d | n
gcd(a,n) . If p is a prime divisor of d and pe is its highest power dividing n,

then the condition on a implies pe+1 ∤ a.
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� As in solution 1, we can use PIE to count the number of valid a, b. To do this, we need to be able
to compute the number of a, b such that t | a, d | b, a < b for some t e�ciently. To do this, note
that there are ⌊md ⌋⌊

m
t ⌋ pairs without the condition a < b. Let's subtract the bad pairs with a ≥ b

to obtain ⌊m
d

⌋ ⌊m
t

⌋
−

⌊m/t⌋∑
k=1

⌊
kt

d

⌋
It is a well known problem to compute this in logarithmic time. Two possible ways to do it are:

� Find the convex hull of the points under the line using continued fractions and apply Pick's
theorem.

� A simpler solution: https://codeforces.com/blog/entry/65500?#comment-496162

Solution 3:

� Fix n and iterate it over all values ≤ m.

� Iterate over all subsets S of prime factor of n. Those will be the primes which n and b have in
common.

� Use PIE to calculate the number of (a, b) with a < b such that b shares exactly the prime factors of
S with n. To calculate this, it is again necessary to calculate a sum of �oors e�ciently, similarly to
solution 2.

For the solutions (in particular the �rst), it is di�cult to estimate the asymptotic time complexity because
it involves sums of functions depending on the distribution of primes. The easiest way to verify that the
solutions are indeed fast enough is to implement them or to estimate the number of operations using a
simple program.

Problem E. Taxi
Let T be the given tree. We want to �nd the shortest path on the graph G′ where edge (u, v) has weight
au + bu · d(u, v) where d(u, v) is the distance of u and v in T . This graph has too many edges to do this
naively.

To optimize this, we use the following properties:

Let's look at another simpler version of this problem. Imagine there are di�erent options for types of
taxis at vertex 1 and no taxis at any other node. Each taxi's cost function can be represented as a linear
function. Given the distance to another vertex (i.e. with LCA), this cost can be calculated e�ciently using
the convex hull trick.

Going back to the original problem, we can take advantage of some useful properties of the centroid
decomposition trees. Let T ′ denote the centroid decomposition tree of T . For any two vertices u and v in
T , either v is a descendant of u in T ′, or at least one of u's ancestors lies on the simple path between u
and v. Furthermore, the sum over all descendants and ancestors is bound by O(n · log n) as T ′ only has
depth O(log n).

Using the centroid decomposition tree, we could maintain the minimum cost from any vertex to all
ancestors without changing taxis. We save these costs in a convex hull datastructure at the ancestors. We
can now �nd the minimum cost from any already processed vertex to any new vertex without changing
taxi by just checking all of its descendants and ancestors.

We can also further simplify the problem by noticing that we will only change to taxis with lower cost
per distance traveled. In other words, for the minimum cost, the cost per distance traveled will be strictly
decreasing.

Using all of the properties above, we can start solving the actual problem. First, we iterate over the
vertices u in non increasing order of cost per distance. For this node, we add its cost function to all
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ancestors (of T ′) including itself. The cost function will be the sum of the minimum cost to get to u and
the base cost av with slope bv. To �nd this minimum cost, one only needs to check the cost from already
processed descendants of v and through all ancestors.

Then we can iterate over all vertices and calculate the minimum distance by repeating this process. Adding
the cost function will not be necessary anymore as any taxi you might take will already have been added.

This process is correct since the �rst iteration calculates the minimum cost to all vertices u that do not
use any more expensive cost per distance traveled than bu. While this is not the actual minimum cost to
get to vertex u, this is the minimum if it would be optimal to change taxis at this vertex.

In the second iteration, the �nal answer will be calculated since all vertices where taxis will be changed
are already processed.

In total, the time complexity isO(n log2 n) because
∑

u(Number of ancestors and descendants) = O(n log n)
and the other data structure operations take O(log n) time.

Problem F. Periodic Sequence
We reduce a and b to their minimal periodic form. For example: abcabcabc → abc and
bcabca → bca. This can be done with kmp or z-function. For kmp, the cycle length is{
n− kmp[n− 1] , if that value divides n

n , else.

After this, we just need to check if a and b are (cyclically) equal. This can again be done with kmp or
z-function by checking if a′a′ contains b′.

Problem G. Operations on Subarrays

How will the solution work for the entire sequence?

We count the bits at each position. Since the operation allows us to swap bits (0 or 1) between any two
numbers in the sequence, we can construct a solution starting from a bit frequency vector, optimally
distributing the available bits.

Let w be the maximum number of bits for any value in the sequence (in the problem statement, w ≤ 20).

We start with all values set to 0. We consider the bits from the most signi�cant to the least signi�cant,
following this principle: at each position, we assign 1 bits to the smallest values constructed so far, and 0
bits to the largest values, then we re-sort the sequence (complexity O(w ·n log n)) or merge it (complexity
O(w · n)).
It can be proven that this strategy leads to an optimal solution using a simple argument that we will
elaborate on later.

To achieve better runtime, we notice that after processing each of the w bits, the number of distinct
values in the sequence increases by at most 1. Therefore, we can "simulate"the naive algorithm described
above on a "compressed"representation of the sequence de�ned by pairs (value, frequency). Thus, the
complexity of the algorithm becomes O(w2 logw) or O(w2), depending on the implementation.

In the end, we will have at most w pairs (value, frequency), and the sum can be easily computed.

To answer a query, we compute the di�erence between the counters at the ends of the requested interval
(as partial sums) and obtain the counter for the subarray for each of the w bits. We then apply the
described algorithm.

It remains to justify the correctness of this algorithm.

It is clear that if we apply the operation between two numbers at a position where the bits are identical,
the operation does not change anything. Thus, the only signi�cant changes occur when swapping a 0 bit
with a 1 bit.
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Details of the Operation

The operation "moves"a value (power of 2) from one number to another. Initially, this transition is
bene�cial when the resulting values are closer to each other. This can be proven with a very simple
mathematical calculation.

Reapplying the operation between the same two numbers allows us to swap entire sequences of bits
between them.

Using this idea, we make an observation that fully justi�es the solution:

Consider the optimal solution. We select two elements from the sequence. We divide their binary
representations into su�xes and pre�xes of equal length (the sum of which is clearly equal to w). It
can be proven (again with a simple mathematical calculation) that it is optimal for the larger pre�x to
correspond to the smaller su�x.

Problem H. Mod Graph
For every query, we want to �nd a path through G that sets the counter of every vertex to zero. To do so,
we will construct a new graph G′ which has the same set of vertices and directed edges. This new graph
will have an Euler Cycle. Walking along the edge (u, v) in G′ then corresponds to walking along the edge
{u, v} in G.

For every undirected edge {u, v} in G, we add bu · bv of both the edges (u, v) and (u, v) to G′. The graph
G′ is now connected and every vertex has the same in and out degree, so an Euler Cycle exists. Because
every vertex v is entered deg(v) · bv times, this does not modify the values in the vertices. We can now
increment the value au and av of two adjacent vertices u and v by 1 by adding one copy of (u, v) and
(v, u) to G′.

Next, observe that for any vertex u, we can add bu to any vertex other than u. With the previously shown
gadget, this is clear for all neighbors v of u: Just add 1 to both u and v a total of bu times, and because
u's counter calculates modulo bu, its value remains unmodi�ed. Now assume that we already know how
to add bu to the counter of some vertex v, but not one of its neighbors w. We can add bu to aw by �rst
adding bu to both av and aw by just adding edges between v and w, and then repeatedly adding bu to v
until it is back at its original value.

With the ability to add bu to any other vertex v, we can see that all bu can be replaced by b := gcdv∈V (G) bv
because of Bezout's lemma.

We can make almost all vertices zero (except for one): Pick a vertex t, walk from s to t and build a
DFS-tree from it. When we �nish vertex u ̸= s with parent p, we add a value to the edge {p, u} such that
au = 0. After that, all vertices except t are guaranteed to be zero.

If G contains an odd cycle u1, . . . , uk, we can walk around the cycle once and then subtract 1 from every
edge of the form {u2i, u2i+1}. This means we added 1 to au1 and no other value changed. If we choose u1
as the root of our DFS-tree of the previous paragraph, this allows us to make all values zero. Thus, the
answer is always yes if the graph is not bipartite.

If the graph is bipartite, the following invariant is maintained during our walk modulo b: I = (R−B)+ c
where R is the sum of all au for red vertices u, B is the sum of all au for blue vertices u, and c is 0 if
we are currently on a red vertex in our walk and 1 otherwise. This way, when walking to a red vertex,
we increment R and decrement c, leaving I unmodi�ed. When walking to a blue vertex, we increment B
(which decrements I) and decrement c. This means that the value of I is only dependent on the starting
values of all counters. We can easily maintain I through every update query in O(1) time.

Remember that starting at vertex s increments as by 1, which modi�es I for this query only. You may
also choose not to make the last step in the Euler Cycle of G′, which would undo this increment.

Last, there is one exception to the bipartite case: If the graph has only one vertex, we cannot walk at all.
In this case, we just output YES if av + 1 = bv, and NO otherwise.
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Problem I. Arithmetic Progression and Triangle
The sum of the angles is equal to 180 degrees, so we have a+(a+ d)+ (a+2d) = 180, so (a+ d) · 3 = 180
and a+ d = 60, so the middle angle is equal to 60. If the given angle is greater than 60, the answer is −1
(it cant be minimal), otherwise the angles are uniquely determintd and the answer is 60, 60 and 120− a,
120− a

Problem J. Permutation Recovery
Let aij denote the entries of the matrix. For every aix = y, there is a corresponding entry ajy = x (because
the original matrix contains the inverse of every permutation).

We create a multi-graph G with an undirected edge {x, y} for each corresponding pair. Note that G may
contain self-loops.

Every vertex has the even degree 2k, so we can �nd an Euler tour on each component of the graph. This
Euler tour assigns a direction to every edge such that every vertex has k outgoing and k incoming edge
endpoints.

For every vertex u, split it into uin and uout in an auxiliary bipartite graph G′. If the Euler tour directed
an edge from u to v, add the edge {uout, vin} to G′. Graph G′ is k regular, so it has a perfect matching
by a corollary of Hall's theorem. We can �nd this perfect matching in O(nk

√
n) with Hopcroft-Karp.

We create a permutation π where if uout is matched with vin, we set π(u) = v. For every i, remove one edge
{i, π(i)} from G, which leaves a (2k − 2) regular graph and repeat the same algorithm for the remaining
k − 1 permutations.

This leads to a O(k2n
√
n) solution.
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