
Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 1

Problem A. Adding Integers
De�ne a0 = n and aq+1 = 0.

De�ne bi = ai−1 − ai ≥ 0.

Note that

q+1∑
i=1

bi = n.

Look at
(
n
a1

)
·
(
a1
a2

)
· . . . ·

(
aq−1

aq

)
=

(b1+b2+...+bq+1

b2+...+bq+1

)
·
(b2+b3+...+bq+1

b3+...+bq+1

)
· . . . ·

(bq+bq+1

bq+1

)
. This is the number of ways

to color elements in q + 1 colors such that there are bi elements of color i.

Turns out that f(q) is simply the number of ways to color n elements into q + 1 colors.

So f(q) = (q + 1)n.

Problem B. Bottles
We will consider these permutations of all bottles (e+p+w)!

e!w! , since the order of poisonous bottles matters.

We will count how many of those result in the elf being alive.

Consider we have some sequence of poisonous bottles and bottles with water. For each such sequence,

there is the �rst �poison� event that happens after some time x. It means that if we try all ways to add

elixir bottles to that sequence, the ways that result in at least one elixir bottle being among the �rst x
bottles in the sequence keep the elf alive.

So if we count for each x, f(x) � how many sequences of bottles out of (p+w)!
w! consisting of poisonous

and water bottles that have the �rst event happening right after element x. Then the answer is
(e+p+w)!

e!w! −
∑

x f(x)×
(
e+p+w−x

e

)
, where

(
e+p+w−x

e

)
� the number of ways to place all elixir bottles in

the sequence after position x, hence killing the elf.

How to calculate f(x). Let's calculate g(x) � the number of sequences of poisonous and water bottles,

such that the event is not happening before x. It means f(x) = g(x) − g(x + 1). Consider all poisonous
bottles that can poison before x: such i, so that 1 + i + t − 0.5 < x, so i ≤ x − t − 1. So there are

m = min(x − t − 1, p) such bottles. Other bottles can be in any order. Bottle 1 has to be at positions

from x− t up to the end p+w, so there are p+w− (x− t)+ 1 ways. Bottle 2 has to be at positions from

x− t− 1 up to the end, but one of the positions is taken by bottle 1, so also p+w− (x− t)+ 1 ways, and

so on. So there are (p + w − (x − t) + 1)m ways to place these m bottles, and (p+w−m)!
w! to place others.

So g(x) = (p+ w − (x− t) + 1)m (p+w−m)!
w!

Problem C. Counting Orthogonal Pairs

The angle of a regular polygon in degrees is (n−2)·180
n .

Consider all diagonals; there are n − 3 diagonals from the vertex, and it divides into n − 2 angles. Each

angle is equal and of (n−2)·180
n(n−2) = 180

n degrees. The angle between two line segments coming from the vertex

is 180 · k
n for some 1 ≤ k ≤ n − 2. 180 · k

n = 90 only when k
n = 1

2 , and for integer k and n, this only
happens when n is even, so k = n

2 , and there are n
2 − 1 ways to choose a pair of segments.

When n is odd, the answer is 0.

When n is even, the answer is n ·
(
n
2 − 1

)
.

Problem D. Divine Tree
Count the number of G and B coins, let them be g and b, respectively.

Note that because the size is odd, after the type 2 operation, we will de�nitely know which of the two

trees has G coins and which has B coins because their sizes would di�er, and their sizes have to be g and

b, respectively.

Also note that if we have chosen the edge for the type 2 operation, the number of times for each edge to

Page 1 of 5



Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 1

be used in the type 1 operation is �xed; we can just count it. For each edge, we can see how many G and

B coins are at each side of the edge and how many G and B coins there have to be at each side of the

edge. This imbalance is the number of times we need to use the edge. You can prove that you can always

make the type 1 operations so that every time you use an edge, the imbalance decreases for it, and �nally

get 0 imbalance for all edges.

Make a tree rooted at some vertex and get all subtrees of size g and all subtrees of size b. For every edge

that you can use in the type 2 operation, either the subtree of size g or the subtree of size b has this edge
coming from its root. Store information about subtrees of size b and g independently and in a similar way,

and make updates independently. When getting the query answer, get for both and take the minimum.

Now consider only one case: we have subtrees of size g, and we want for each of them to store and update

the cost to make type 1 operations, to afterwards make type 2 operations on the edge coming from its

root. Note that these subtrees are disjoint.

Let's start with all weights equal to 0 and make an update operation for an edge weight. Consider some

edge uv is updated, d is added to its weight, and v is more distant from the root than u. And consider

a single subtree A of size g. There are three cases: if an edge is in A, if A is in the subtree of v, and
otherwise.

1. If an edge uv is in A, then A's value will change by the number of B vertices in v's subtree times d;

2. If A is in the subtree of v, then A's value will change by the number of G vertices outside v's subtree
times d;

3. Otherwise, A's value will change by the number of G vertices in v's subtree times d.

We can update these values for all trees simultaneously by ordering them in the order of DFS visiting

them. There is only one subtree of size g for case 1, and cases 1 and 2 can't happen at the same time.

Create a data structure that supports range addition and range minimum, and make an update in log n
time.

Problem E. Experiments With Divine Trees
Iterate over s the number of G coins. There are a total of

(
n
s

)
ways to put coins. If you don't have a

division into s and n− s vertices, then there is no way to make s G coins; just skip this s.

Consider a case when you can't remove any leaf. Look at the division into s and n− s. If you have a leaf

in the s subtree with G, then you can remove it. If you have a leaf outside s with B, then you can remove

it. It means the only way when you probably won't be able to remove is when all leaves in s are B, and

all leaves in n− s are G. The number of ways to make that is
(n−l(s)−l(n−s)

s−l(n−s)

)
, where l(s) and l(n− s) are

the number of leaves in each part.

Consider three cases; if any of them holds, all the
(
n
s

)
ways should be counted:

1. You have at least two divisions into s and n− s vertices.

2. Consider an edge uv that divides into s and n − s (v at the side of s, and u at the side of n − s),
and u is either a leaf, or it has at most one other edge coming out of it. This actually means there

is a division into s+ 1 and n− s− 1 that s+ 1 subtree contains a subtree of s, that is taken from

the division into s and n− s.

3. You have at least one division into s− 1 and n− s+ 1 vertices.

You can prove those by either removing any leaf inside s or outside all considered subtrees, and consider

both cases when they are G or B, ending up that there is always a division after removal.

Page 2 of 5



Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 1

It turns out if these three cases don't hold, then a bad case happens; we can prove it the same way by

trying to remove each type of leaf, and it happens that the cases above cover all ways to divide. So in this

case, we take
(
n
s

)
−

(n−l(s)−l(n−s)
s−l(n−s)

)
ways.

Problem F. Fruit Tea
Note that if

∑n
i=0max(0, ai+1 − ai) = k, then

∑n
i=0min(0, ai+1 − ai) = −k, because the number of

increases is equal to the number of decreases, since a0 = an+1 = 0. So we have a total of k increases and

a total of k decreases. Let's look at these changes as +1 and -1. So there are k +1s, and some of them are

grouped in the same ai+1 − ai, and there are k -1s, and some -1s are grouped, but +1 and -1 can not be

in the same group.

Consider we already have a valid (every pre�x sum is non-negative) sequence of +1 and -1; then let's

calculate the number of di�erent ways to express it in a. Let's get a sequence of +1 and -1 and divide

it into blocks of equal ones; it looks like ((+1)(+1)...(+1))((-1)(-1)...(-1))...((-1)(-1)...(-1)).

Note that there is an even number of blocks.

If we express it in terms of ai, each ai is some pre�x sum of this sequence, with the only rule that between

+1 and -1 there is at least one ai. So there has to be at least one ai between two blocks; a0 is before

the �rst block, and an+1 is after the last block; other ai can be anywhere. So we have (n + 2) elements

to insert; we already inserted 2x + 1 of them � in the beginning and after each of the 2x blocks. Other

elements can be inserted in any position, so there are 2k + 1 positions, and there are (n + 2 − 2x − 1)

elements to insert; the number of ways is
(n+2−2x−1+(2k+1)−1

(2k+1)−1

)
.

Let N(k, x) be the number of sequences of +1 and -1 such that:

� there are 2x blocks of them;

� there are k +1s;

� there are k -1s;

� each pre�x sum is non-negative.

Then the answer will be calculated as
k∑

x=1
N(k, x) ·

(
n+1−2x+2k

2k

)
.

N(k, x) can be calculated by the following formula: N(k, x) =
(
k−1
x−1

)
·
(

k
x−1

)
· 1x , or N(k, x) =

(
k

x−1

)
·
(
k
x

)
· 1k .

See Narayana numbers, Catalan triangle, Dyck paths with k peaks.

Problem G. Gold Coins
The key observation is that the valid con�guration always have speci�c form.

Let's remove all empty rows and columns, let's say we have board n × m now. Then in the remaining

board there should be coordinates x, y ≥ 1 such that the rectangle [1..x][1..y] is full, and the rectangle

[x+ 1..n][y + 1..m] is empty.

We can solve the problem using DP: calculate d[i, j] as the answer for the rectangle [i..n][j..m]. If the
rectangle is empty, the answer is 0, if not, iterate over pairs (x, y) : x ≥ i, y ≥ j, try to split the current

rectangle into four, count number of nonempty rows and columns, and update the result.

Using some standard optimizations this can be done in O(n3 log n) time.

Problem H. Heroes and Illusions
Let's say positions of real heroes are a1, a2, ..., am−1, also add a0 = 0 and am = n + 1. Consider values
bi = ai − ai−1, the lengths of segments between consecutive heroes. The segment [l, r] contains odd

number of heroes, if its ends belongs to segments with di�erent parity, so the number of such segments is

Page 3 of 5



Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 1

(a1+a3+a5+ ...) ·(a2+a4+a6+ ...) = k. Let's say x = (a1+a3+a5+ ...), then we have x ·(n+1−x) = k.
From this equation we can �nd x, and then we have standard problem of counting the number of partitions

of x and n+ 1− x.

Problem I. Interesting Permutations
The whole statement is a bit misleading, and it's just about making a permutation s, of 1 to n, such that

each new si has an absolute di�erence smaller than or equal to k with some previous sj , where j < i.

You can notice that when you know s1, all the numbers smaller than s1 and those greater than it form

independent problems. A subproblem is of the form: you start with s0 = 0, and afterward, we need

s1, . . . , sV to be a permutation of length V with the same absolute di�erence constraint. Let's call the

number of ways f(V ). This number of ways can be found using some dynamic programming, pre�x sums,

and factorials in linear time for all relevant V .

Let's call those two subproblems f(L) and f(R), corresponding to the left and right sides of s1, respectively.
Then, if we �x s1, the total number of ways is calculated as:

f(L)× f(R)×
(
L+R

L

)
If we take g(L) = f(L)

L! instead, this is kind of like the convolution of two arrays.

Now we get queries where we need to answer for l ≤ s1 ≤ r, and the length is n, for some n. We can

reduce this to only queries with 1 ≤ s1 ≤ r, and the length is n.

Because for a �xed r, we can calculate the answer for all n by convolving arrays g(1 . . . r) and g(1 . . .maxN),
so we can do square root decomposition. Precalculate the answer for all r = k ×

√
N , and all n using

Number Theoretic Transform (NTT).

Then, to answer queries, take the largest k
√
N underneath the queried r, and brute force the last

≤
√
N terms. To balance the square root decomposition, you should rather take a larger block size.

The complexity becomes O(n
√
n log n).

Problem J. Jumping Game
Consider a more general problem, where we have the undirected graph G and a token initially placed

in vertex s. Players take turns moving the token, and the token cannot visit the same vertex twice. If a

player cannot move, they lose.

This is a well-known problem, connected to maximal matchings. In particular, it's easy to prove that the

�rst player loses i� there is a maximal matching that doesn't cover vertex s.

Now, in our problem, we have a very speci�c graph. The intuition suggests that for the large board there

is always some perfect (or almost perfect, if the size is odd) matching. That's actually true. We just need

to solve some small cases manually. Namely, cases 1× x, 2× x, 3× 3, and 3× 5.

Problem K. Kangaroo On Graph
Make dynamic programming, calculate for each edge the value d[uv], the minimal cost of the path ending

with edge uv. To calculate this value, let's look at all possible previous edges xu. We need to �nd the

minimum d[xu] over all x, except the ones that form a forbidden triplet. We can store all the forbidden

x for each edge uv, and just iterate all edges xu in increasing order by d[xu], and pick the �rst one that

is not forbidden. Time O(n+m+ k log n)

Problem L. Low Cost Set
What can we do better than just take all segments to set s? It's easy to see that the only way to improve

this solution is to change the pair of segments (a, c) and (b, d), such that a < b < c < d, with three

Page 4 of 5



Ukrainian Programming Cup 4, 23/03/2025
Contest 1, Tutorials, Division 1

segments (a, b), (b, c), (c, d). If we do this, we will decrease the total cost by c− b. So the task is to build

pairs of segments, maximizing the total improvement. This can be done using a (non-bipartite) maximal

weighted matching algorithm.

Page 5 of 5


