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Part I (Speaker:
liuzhangfeiabc)



Kids and Integers by liuzhangfeiabc

Let f (n) be the sum of the decimal digits of n. Define
fk (n) = f ( f (· · · f (n))) (composed k times). Given positive integers
N ,k,m, find how many n ∈ [1, N ] satisfy fk (n) = m.

N ≤ 101000,k,m ≤ 109.
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Solution

For numbers not exceeding 101000, f (n) is at most f (999. . .9) ( 1000

times 9) = 9000.

For numbers not exceeding 9000, f (n) is at most f (8999) = 35.

For numbers not exceeding 35, f (n) is at most f (29) = 11.

For numbers not exceeding 11, f (n) is at most 9.

Therefore, any number not exceeding 101000 will become a single-digit
number after at most 4 applications of f , and will not change thereafter.

Thus, the data range of m and k is misleading.
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Solution

For the original problem, we can split the process of applying f k times
into two parts:

• First, apply f once to get a number not exceeding 9000.

• Then, apply f k −1 times to get m.

We directly preprocess all numbers from 1 to 9000 to see what they
become after 0 to 4 applications of f .

Then, for each 1 to 9000, calculate the number of numbers in 1 to N

whose digit sum is x.

• Perform straightforward digit DP: d p(i , x,0/1) represents the
number of numbers with digit sum x and length at most i , whether
exceeding the upper limit or not.

Then, for each 1 to 9000, check whether x becomes m after applying f

k −1 times, and if so, add the contribution of d p(x).
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Fast Algorithm by Itst

Find the shortest cycle in a weakly connected graph with n vertices, m

edges, and positive integer weights on the edges.

n ≤ 3×105, m −n ≤ 1500.
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Solution

Note that when the in-degree or out-degree of a node is 0, this node will
not appear in the shortest cycle. We can remove such nodes.

Additionally, if a node v has both in-degree and out-degree exactly equal
to 1, then we can directly contract the edges u → v and v → w into a
single edge u → w with a weight equal to the sum of the weights of the
original two edges. Since passing through v will always follow u → v → w ,
this does not change the existence and length of the shortest cycle.

Note that after performing these operations, the sum of in-degrees and
out-degrees of each node is at least three, and each edge contributes only
one in-degree and one out-degree. Therefore, let n′ be the final number
of vertices and m′ be the number of edges. We have 2m′ ≥ 3n′.

Since the graph is weakly connected, each time we remove a node using
the above operations, we delete at least one edge. Thus, m′−n′ ≤ 1500,
which implies n′ ≤ 3000 and m′ ≤ 4500.

Therefore, we enumerate each node in the final graph, run the shortest
path algorithm, and update the answer for the shortest cycle. The
complexity is O(n′m′ logm′).

9



Interesting Words by SpiritualKhorosho

Given s1, · · · , sN , find the number of index sequences i1, i2, · · · , ik (k as
any positive integer) satisfying the following conditions, where +
indicates string concatenation:

• si1 + si2 +·· ·+ sik is a palindrome of length L.

Ensure 1 ≤ N ≤ 333, 1 ≤ L ≤ 1000, and
∑N

i=1 |si | ≤ 600.

What does the title mean?
Using the words given in Example 3, you can reconstruct a famous
English palindrome sentence, and the title is the Chinese translation of
this sentence. In addition, the Pinyin (excluding tones) of the first and
fourth characters, and the second and third characters of the title are the
same.
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Analysis

When solving string matching-related problems, there is a common
strategy to keep track of the current position and which node it
corresponds to in the automaton.

This problem requires the entire string to be a palindrome, so it’s not
convenient to maintain matching information in one direction. To solve
this problem, let’s match simultaneously from both sides: let f (i , · · · )
denote the scenario when processing the i -th and (L− i +1)-th positions,
with matching conditions represented by · · · .

When transitioning from f (i , · · · ) to f (i +1, · · · ), we need to enumerate
the next letter α. The pointer corresponding to the i -th position,
pointing to the node ql in the automaton, should find the forward
transition edge corresponding to α. The pointer corresponding to the
(L− i +1)-th position, pointing to the node qr in the automaton, should
find the reverse transition edge corresponding to α. Forward transitions
can be easily maintained using a Trie tree, but reverse transitions are
more complicated.

Note that we can build a Trie tree in reverse, making it convenient for
backward searches.
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Forward Trie and Backward Trie
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Approach

Let f
(
i , ql , qr

)
represent the scenario when processing the i -th and

(L− i +1)-th positions, where the i -th position corresponds to the node
ql on the forward Trie tree, and the (L− i +1)-th position corresponds to
the node qr on the backward Trie tree. When transitioning, enumerate
the letters α at the (i +1)-th and (L− i )-th positions. If both ql and qr

have transition edges for α, then transition accordingly to f
(
i +1, q ′

l , q ′
r

)
.

We need to handle the merging of ql and qr at i = L/2: if it’s odd, the
two nodes need to be able to reach the same position of the same word
with the same letter; if it’s even, both sides might reach the end of the
word, or they might be adjacent positions of the same word.

• stack/cats

• step/on/no/pets

• noon
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Approach

The official solution represents f
(
i , ql , qr

)
as the number of valid

scenarios for the i -th to (L− i +1)-th positions when both sides are
matched to ql and qr . First, calculate f (dL/2e , ·, ·) = 0/1 based on the
word list, and then expand f (i , ·, ·) according to f (i +1, ·, ·). Directly use
loops to calculate DP with rolling arrays to avoid space issues.

• Of course, the space limit for this problem was expanded to
1024MiB. As long as you don’t create two int arrays of size
500×6002, space won’t be an issue. If you want to use memoization,
you can use char to record whether each state has been visited,
which should also pass for this problem.

The complexity seems to be O
(
L

(∑N
i=1 |si |

)2 |Σ|
)
, but in reality, not all

states will be filled. A more efficient approach is to enumerate the
transition edges of ql and qr , achieving a strict O

(
L

(∑N
i=1 |si |

)2
)
, which

can easily pass this problem.
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N Range?

1×26+2× (333−26) = 640 > 600.

600−1×26

2
= 287.
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Part II (Speaker: Mys.C.K.)



A Tree Game by Itst

Given a tree with n nodes, the two players play a game on the tree.

Initially, node 1 has a chess piece. In each move, the first player prohibits
an edge, and the second player chooses an edge that has not been
prohibited to move the chess piece along it. The second player wins when
reaching a node with exactly one degree, and the first player wins when
unable to move.

Ask who wins when both players are extremely smart.

1 ≤ n ≤ 105
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Solution

Firstly, it needs to be noted that the first player wins when n = 1 because
there is no node with degree 1.

We first gain some more intuitive ideas:

• For the second player, going back is not optimal, as it gives the first
player more chances to prohibit edges. So, we can consider the tree
as an outward tree with 1 as the root, and the second player will
only move the piece away from 1.

• For the first player, it is always more optimal to prohibit an edge
connected to the piece in each move.

• If following the second player’s strategy, which always moves away
from 1, the first player will always prohibit the edge connected to
the current node and one of its children in each move.
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Solution

After considering the tree as an outward tree, a recursive structure
naturally arises:

• If there are ≥ 2 winning subtrees, the second player can win by going
into any of them;

• If there are ≤ 1 winning subtrees, the first player prohibits the
subtree, and the second player has no chance.

Changing the outward tree to an undirected tree does not change the
outcome:

• We only need to consider whether the winning situation for the first
player changes.

• Since the second player loses in each subtree, even if they can go
back into another subtree, they cannot win.

Therefore, DFS calculates the winning situation for each subtree when 1
is the root.

Complexity is O(n), and it can be easily passed.
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Binary String by Itst

Given a string s with the character set 01?. For each 1 ≤ k ≤ |s|, define
the string tk as the following 01 string:

• If si is not a ?, then tk,i = si .

• Otherwise, tk,i = tk,i−k , and you need to recursively calculate tk,i−k ;
if i −k is out of bounds, it is 0.

You need to output the number of 1 in each tk .

1 ≤ |s| ≤ 105.
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Solution

To obtain each character of the string tk in order of indices results in an
O(n2) solution.

Notice that the character set is 01, so consider bitwise compression,
obtaining the ω= 64 characters of tk each time.

For k ≤ω, the solution is straightforward. For k ≥ω, the characters
tk,i . . . tk,i+ω depend on the characters tk,i−k . . . tk,i−k+ω, which are
calculated in advance. Therefore, we need to perform the following
operations to obtain this segment of characters:

• Obtain the binary representation of tk,i−k . . . tk,i−k+ω;
• Obtain the binary representation of the positions of ? and 1 in

sk,i . . . sk,i+ω.
• For the positions of ?, use tk,i−k . . . tk,i−k+ω, and for the non-?

positions, use sk,i . . . sk,i+ω, which can be easily implemented using
bitwise operations after obtaining the binary representation.
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Solution

If we use a long long to store a segment of characters like
tk, jω . . . tk,( j+1)ω−1, the first part is only related to two long longs. If we
choose i as a multiple of ω each time, the second part can be
preprocessed directly.

This results in a solution with complexity O
(

n2

ω

)
, which should be

acceptable.
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Hamiltonian Cycle by Itst

Given n pairs (ai ,bi ).

Consider a weighted directed complete graph G with n nodes, where the
weight of edge i → j is |ai −b j |.
Find a Hamiltonian cycle in G that maximizes the sum of edge weights,
and provide the maximum value.

n ≤ 105, ai ,bi ≤ 109.
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Solution

We need to maximize the sum of absolute values.

Since |ai −b j | = max(ai −b j ,b j −ai ), we can find a Hamiltonian cycle
and assign positive and negative signs to each ai and b j so that each
edge i → j has one positive and one negative number. The maximum
value we seek is the maximum sum obtained from this assignment.

Due to the fact that each node in the Hamiltonian path has an indegree
and outdegree of 1, the final assignment should have n positive and n

negative numbers. Therefore, we need to find the assignment of n

positive and n negative numbers that maximizes the sum, ensuring that
there exists a cycle that satisfies the condition (ai and b j with opposite
signs).

If we ignore the constraint of the cycle, the maximum sum assignment is
simple: sort the numbers and take the larger n as positive and the
smaller n as negative. However, this may not satisfy the Hamiltonian
cycle condition, so we need to carefully consider this constraint.
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Solution

Consider which sign assignments will violate the condition of a
Hamiltonian cycle.

Note that for the edges in the cycle, we require ai marked as negative
(positive) must connect to b j marked as positive (negative). If all bi

marked as negative correspond to ai marked as positive, then since bi is
negative and ai is positive, i cannot be connected to j where b j is
positive and a j is negative. Thus, there is no way to form a large cycle.

If only one of these situations exists or there exists ak and bk both
marked as positive, we can connect the two parts through k, thus
constructing a Hamiltonian cycle.

Therefore, the conditions for the nonexistence of a Hamiltonian cycle are:
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Solution

Since the initial greedy solution may not satisfy the constraints, we
consider making the smallest adjustments possible to obtain a solution
that satisfies the constraints.

The first greedy adjustment is to swap the signs of the elements with
ranks n and n +1. However, this may still not satisfy the constraints. If
not, then the elements with ranks n and n +1 correspond to some pair
(ai ,bi ). Therefore, further adjustments—swapping the signs of the
elements with ranks n and n +2 or ranks n −1 and n +1—will obtain a
valid solution.

Compare the legality of all four schemes and choose the optimal solution
among the valid ones.

The complexity is O(n logn).
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Part III (Speaker: E.Space)



Easily Broadcastable Tensors by Itst

Two sequences a1, . . . , am and b1, . . . ,bn are called broadcastable if and
only if the following conditions are met:

• For all 0 ≤ i ≤ min(n,m)−1, either am−i = bn−i or
min(am−i ,bn−i ) = 1.

Given two sequences of positive integers, you need to insert some 1s into
both sequences, minimizing the number of insertions, while ensuring that
after insertion, the two sequences are broadcastable.

Sequence length, value range ≤ 2000.
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Solution

Since broadcasting requires matching the suffixes of the sequences,
consider making decisions from the end. Also, this insertion and matching
process is similar to edit distance, so consider dynamic programming.

Let fi , j be the minimum number of additional 1s needed when the first
sequence has matched i , . . . ,m, and the second sequence has matched
j , . . . ,n.
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Solution

Three transitions:

• ai is matched with a newly inserted 1, transition from fi+1, j +1.

• b j is matched with a newly inserted 1, transition from fi , j+1 +1.

• ai and b j can match directly (ai = b j or min(ai ,b j ) = 1), transition
from fi+1, j+1.

The initial value is fm+1,n+1 = 0, and the final answer is minmin(i , j )=1 fi , j ,
as according to the definition of broadcasting, once one of the sequences
is completely matched, the remaining prefixes of the other sequence do
not need to be matched.

Complexity: O(nm).
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Junctions by gyh

There is an undirected weighted graph with n vertices. For each edge,
determine whether it is a necessary edge in the shortest path between
two points.

n ≤ 500

29



Solution

Property: For an edge (x, y), if it is a necessary edge in the shortest path
between two points, then it must be a necessary edge in the shortest
path between x and y .

Proof: If (x, y) is not a necessary edge between x and y , then each
occurrence of x, y can be replaced by another path.
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Solution

Determine whether (x, y) is the unique shortest path between x and y .
Simply check if there exists z such that dx,z +dz,y ≤ wx,y . You can use
the Floyd-Warshall algorithm to find all-pairs shortest paths and directly
enumerate z for checking. The overall complexity is O(n3).
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Colored Slime Balls by E.Space

Zuma game.

Each time a ball is launched, it costs w (can only increase the length of a
certain segment).

At least k consecutive balls are required to eliminate.

Eliminating a segment of length i can get a score of pi , ensuring
pi −pi−1 < w .

Initially, there are n segments, find the highest score after elimination.

n ≤ 150,k ≤ 10.
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Solution

Interval DP, consider which segments to remove in the end.

This subsequence must satisfy being able to be divided into two parts
with a length < k, and the total sum of the entire subsequence must be
≥ k.

Then this subsequence divides the entire sequence into several segments.

In each segment, the last one removed cannot be the same color as this
subsequence.

So, remembering these conditions in the state can perform the transition.
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Solution

Let f (l ,r ) be the answer for the interval [l ,r ].

g1(l ,r, p1) is the answer for the case where the left endpoint of the
interval is l , considering the part of the subsequence in [l ,r ], and taking
the r part, when the sum of the first part is p1, the answer for all
intervals not in the subsequence within the [l ,r ] interval.

g2(l ,r, p2) is ... and the answer for the case where the sum of the second
part is p2, ... the answer.

Then enumerate the next/last segment for the transition.

Color conflict is when calculating f , consider l −1 and r +1.

Time complexity O(n3k2).
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Part IV (Speaker: JohnVictor)



Generating The Sequence by JohnVictor

Given a sequence a1, a2, · · · , an of length n, where each ai is an odd
number.

There are two types of operations:

1. Given l ,r, x, add the even number x to al , al+1, · · · , ar ;

2. Given l ,r , calculate the product of al , al+1, · · · , ar , and output the
result modulo 220.

n, q ≤ 2×105.

35



Solution

Consider a segment tree, where each node maintains the polynomial∏
(x +ai ) mod x20.

For the translation operation, simply replace x with x +∆x and
substitute. The complexity is O(202). The correctness lies in the fact
that, under the condition that x is guaranteed to be even and the answer
is modulo 220, the polynomial modulo x20 does not affect the result.

For the product calculation operation, return the constant term.

The overall complexity is O(202n logn).
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Daisies on a Grid by JohnVictor

Recall the problem statement: There is a grid of size n ×m colored with
Z3.

A single evolution is defined as follows: For a cell with color c, if there is
an adjacent cell with color c −1, then in the next round, the color of this
cell becomes c −1, otherwise, it remains unchanged.

A coloring scheme is considered good if, and only if, after a finite
number of evolutions, all cells have the same color.

For a good coloring scheme, its weight is defined as the smallest positive
integer t such that after evolving the grid for t times, the color of the
top-left cell remains unchanged.

Some cells on the grid have predetermined colors, while others do not.
The task is to find the number of good coloring schemes and their total
weight.

2 ≤ n ≤ 5,2 ≤ m ≤ 50.
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Solution

Observe that [
0 1

2 2

]
7→

[
2 0

1/2 1

]
,

which means that matrices of this type (or their rotations/flips, plus an
added constant) will definitely map to themselves.

We call this structure blocking a grid from being good.

Claim: Grids without blocking structures are always good.
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Solution

Now, let C ∈Zn×m
3 be a grid, and all 2×2 subgrids of C are not blocking

structures.

We can always find an assignment of integers to each cell, denoted as
F ∈Zn×m , such that:

• Ci j = Fi j mod 3.

• The difference between adjacent entries in F is at most 1.
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Solution

C =



0 0 2

1 0 0

1 1 0


,F =



0

0 −1

1 0 0

1 1 0



Fi j ∈ Fi ( j−1) + {−1,0,1} ensures that F is uniquely determined.

Without blocking structures, it ensures that F is legal (ensuring that the
constraints not used to generate F are satisfied).
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• Evolutions on C correspond to evolutions on F .

• Evolution on F : Change each cell to the maximum of itself and its
neighbors.

• Stable state: All numbers stabilize to the minimum value of F .

• Weight: Shortest path from the top-left cell to the minimum value
in F .
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Solution

Let’s assume n ≤ m, and fill in colors from the smallest to the largest column
by column. Maintain the values of F on the contour line.

The state of F on the contour itself only needs to know the difference between
adjacent numbers, and the number of states is O(3n ).

We also need to know how much larger the minimum value on the contour is
than the minimum value, which has a size of O(m).

When updating the minimum value, decide if this is the last minimum value. If
so, the shortest distance can be at most n more, which can be used to optimize
the state, achieving a time complexity of O(nm ·3n nm).
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Thank you for listening!
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