
Round 7: Div 1
14 липня 2024 р

Problem A. Permutations and Cycles (Minimum Version)
Let us try to solve the problem for x = n+ 1.

Notice that the number n can be placed only next to the number 1 and permutation either starts with
the pair (n, 1) or ends with the pair (1, n). Then let us consider the element n− 1 which can be placed
only next to the element 2 as 1 is already used. This pair can be also at the first free place either left
or right. So let us try brute force solution with two branches – try to place the current pair of elements
either at the front or at the end. For speeding it up use some optimizations. For example, it seems that it
is better to try to place each pair at the beginning rather than at the end as it decreases amount of stable
points. Considering the answers for various n we can notice that the answer is always 1 except the only
case n = 7. So we can risk and try to optimize our brute force using this observation. We can use dsu
with rollbacks to avoid cycles(except the moment at the very end). It turns out that this is fast enough
to find all the answers for n ≤ 2 · 105. n = 7, x = 8 is a special case and for n = 7 you can try every
permutation to find the answer. If x > n+ 1 just set x = n+ 1.

Problem B. Segments Removal
1st statement: if we consider a certain point in the answer, it will be taken into account with a segment
of maximum weight covering it. Let wmax(i) be the cost of the segment of maximum weight covering
point i. Next, let’s write the dynamics: dp(i) is the highest score if we definitely cover point i, while
considering segments that do not start to the right of i (even those that end to the right, but we consider
them up to point i). To recalculate, we will iterate over the index j of the previous covered point.
We are interested in segments that cover both points i and j, as well as segments covering i but not
covering j. Let cost(l, r) be the total penalty for segments that do not intersect l but intersect r. Then
dp(i) = maxi−1j=0 dp(j) + wmax(i)− cost(j + 1, i). Such dynamics can be calculated in quadratic time. To
speed up, we will store the values dp(j)− cost(j+1, i) for the current i in the segment tree, moving from
left to right, then we need to add all opening segments at point i to the prefix, and then, after processing
point i, remove all closing segments on the corresponding prefix. All this can be done with a segment tree
with addition on the segment and a maximum query. The complexity is x · log(x).

Problem C. Segments and Subsets
Notice that the structure of segments represents a tree, and also, for a fixed set, the optimal answer is x
- (the sum of the lengths of segments into which nothing is nested). The tree can be built using a stack,
sorting events of the form start of segment/end of segment. Then we iterate through the tree node (which
is a segment) and calculate its contribution to the answer. This is x · 2n− 1− (r(v)− l(v)) · 2n−sz(v). Here
l(v), r(v) are the start and end of the segment, sz(v) is the size of the subtree of node v. The idea is that
the length of the segment of node v needs to be subtracted when it is a leaf.

Problem D. Sum of Characteristics
We will iterate over l from right to left and for each possible r maintain the minimum on the corresponding
segment in some data structure. The key observation is as follows: let at be some element to the right
of l, and together these elements give the value max(ai + t, at + j). Then it makes no sense to check
the elements that are to the right of t and greater in value. But then we can maintain a decreasing
sequence for the element al, the indices of which are equal to i0 = l < i1 < ... < ik < ik+1 = n + 1,
and the values a(i0) > a(i1) > ... > a(ik) > a(ik+1) = 0. Let f(i, j) = max(ai + j, aj + i),
fp(i, j) = min(fp(i, j − 1), f(i, j) for j > i + 1, and fp(i, i + 1) = f(i, i + 1). Consider the subsegment
is + 1...is+1 − 1. Notice that the values in our data structure only decrease, therefore, we should update
some prefix of this subsegment with the new value, which is equal to fp(l, is). Therefore, we can search
for the first value on the segment that is less than the given one, update it on the segment, and find the
sum on the segment, all of which can be done by a segment tree. The problem we have is that k can
theoretically be large. However, now let’s remember about the randomness of the elements. It is claimed
that in this case, k will be small and in practice reaches only 33.

Page 1 of 5

Round 7: Div 1
14 липня 2024 р

Problem E. Random Permutation
Let’s denote posi as the current position of the number i. Let l = 1, r = n be the current segment under
consideration. Obviously, as long as l ≤ pos1 and r ≥ pos1, we will write the number 1 into the sequence
A. In other words, from one end, we must reach pos1 and remove the one. Then, we will move to the
segment (l, pos1 − 1) or (pos1 + 1, r) for some l, r. Let ans(l, r) denote how many sequences A can be
obtained if we have permutation elements numbered from l to r. By the way, it is clear that we cannot
obtain two identical sequences if we make different transitions from some state (segments from different
sides of the minimum contain different elements, and segments from one side contain a different number
of elements). How to calculate ans(l, r)? Let m = min(l, r) be the minimum on the segment (l, r), then

ans(l, r) =
posm∑
i=l

ans(i, posm−1)+
r∑

j=posm

ans(posm+1, j)−1. It seems that this is cubic dynamics, which

can be optimized to quadratic. However, let’s show that the number of states in a random permutation
is O(n · log(n)). Let’s denote left(i), right(i) as the nearest elements to the left and right, respectively,
of the position i that are smaller than the element at position i. For each element i that is the maximum
for its subsegment, states (i + 1, i + 1), (i + 1, i + 2), ..., (i + 1, i + right(i) − 1) can be added, as well
as similar states up to left(i) on the left. In other words, we are interested in the sum right(i)− left(i)
for all i. To prove the estimate of this quantity, we will consider the elements in ascending order. Let’s
assume that we are considering the element x, and at all positions in the permutation where the elements
are not greater than x, there is a 1, and at other positions there is a 0. We are interested in the distance
from posx to the nearest one on the left and right. Since the permutation is random, we can assume that
the elements are approximately equidistant from each other, and the distance is O(n/x). And the sum
over all such x is O(nlogn), which is what needed to be proved. To make the solution pass the time limit,
it is necessary to optimize it using partial sums. For each state, we will find the range of indices to sum
the dynamic values in the corresponding partial sum vector, and the complexity will be O(n · log2(n)).

Problem F. Game
dp(i) – the answer for the first player, if they are at position i, f(j) – the answer if the second player is
currently making a move from j. Notice that to calculate dp(j), you can take the minimum over f on the
segment i + C...i + r(i), however, f is not fully calculated up to these positions. This can be dealt with
by either performing the operation min = on the segment for f each time and taking the maximum on
the segment over f , or by noticing that if we jump to the left of i + C, the second player will return us
to the minimum on the segment i, i+ C, then jump to i+ l(i) to give them fewer options.

Problem G. Permutation and Queries
1st observation: the answer does not exceed n. Indeed, neighboring elements in terms of index or value
already give a result not greater than n. Let’s denote up as the upper bound of the answer. Since
|i − j| · |pi − pj | ≤ up, then one of the factors definitely does not exceed √up. Then we can find f(P)
as follows: we iterate over i and iterate over j in the range from i − √up to i +

√
up. We have iterated

over the indices, and we also need to iterate over the values in the range from p(i). For updates, we
will act similarly, iterating over the necessary indices and values from the range for elements at query
positions a, b. We will maintain an array cnt(i) - how many pairs of indices give the value i, then we need
the minimum i with cnt(i) > 0. This could be maintained with a set. However, a set could worsen our
complexity. Notice that we need to perform array cnt update queries very quickly, as we have many of
them, and we can afford to answer the query slower - an estimate of O(

√
up) operations will not worsen

the complexity. Then we can build a sqrt-decomposition on the array cnt. Complexity - O(n
√
n). UPD:

the solution with a set on the cnt array also passes, as the update does not always access the set. The
solution with a map for cnt gets TL.

Problem H. Make a Palindrome
If the length is even, then it is necessary to check that the strings at each even position match as sets. If
it is odd, then we can obtain a palindrome by permuting at each even position.

Page 2 of 5

Round 7: Div 1
14 липня 2024 р

Problem I. Good Subsegments
In order to calculate the number of k-good subsegments (denote this quantity as ansk), we fix one of the
edges (left or right) and say that exactly k elements are equal to each other from this edge. Denote this
quantity as calck. Then ansk = calc1 + calc2 + ... + calck = ansk−1 + calck, and we can calculate the
array ans based on the array calc. Now, to calculate calc for each value val, we write down in a separate
vector all the lengths of segments of consecutive elements with this value. We go from left to right through
each vector and calculate the contribution to the answer for this value. At the same time, we agree that
when moving from left to right, we count subsegments such that at least k are equal to each other on the
right, and at least k are equal to each other on the left. When moving from right to left, we count that
at least k are equal on the left, and strictly more than k are equal on the right (we will describe only the
calculation of the first option, the second will be carried out almost similarly). Subsegments consisting
entirely of the same elements are counted separately. Let’s say for the value val the current length of the
segment of the same numbers is len, then we are interested in the sum over all lenprev encountered before,
max(lenprev − len+1, 0). We will maintain the sum and the number of all encountered values, as well as
store the array cnt(i) - how many values less than or equal to k have been encountered. Then through
these quantities, we can calculate everything, and also update them cumulatively in O(n).

Problem J. Series Sum
We will only describe the solution to the problem, without providing how to come to it. Let’s

consider the dynamics f(a1, a2, ..., ap) =
∞∑
n=1

C
a1
n ·C

a2
n ·...·C

ap
n

2n =
∞∑
n=0

C
a1
n+1·C

a2
n+1·...·C

ap
n+1

2n+1 . We will expand

each binomial coefficient using Pascal’s triangle, then multiply all the brackets, and obtain that the

previous expression is equal to 1
2

∞∑
n=0

1∑
i1=0

1∑
i2=0

...
1∑

ip=0

C
a1−i1
n ·Ca2−i2

n ·...·Cap−ip
n

2n Notice that the 0-th term is

equal to I(a1 ≤ 1&a2 ≤ 1&...&ap ≤ 1), where I is the indicator function. Multiply everything by 2
and, rearranging the summation, notice that on the right-hand side, everything has been reduced to
subproblems of the parameters a1 − i1, ..., ap − ip, so we obtain the dynamic programming formula:
2f(a1, a2, ..., ap) = I(a1 ≤ 1&a2 ≤ 1&...&ap ≤ 1) +

∑1
i1=0

∑1
i2=0 ...

∑1
ip=0 f(a1 − i1, a2 − i2, ..., ap − ip).

Notice that on both sides we have the term f(a1, a2, ..., ap). Moving it to the left, we get:

f(a1, a2, ..., ap) = I(a1 ≤ 1&a2 ≤ 1&...&ap ≤ 1) +
∑1

i1=0

∑1
i2=0 ...

∑1
ip=0 f(a1 − i1, a2 − i2, ..., ap − ip),

with the condition that in the last sum, the values i1, i2, ..., ip are not all zero simultaneously. We have
f(0, 0, ..., 0) = 1. Let’s set f(0, 0, ..., 0) = 2, then

f(a1, a2, ..., ap) =
∑1

i1=0

∑1
i2=0 ...

∑1
ip=0 f(a1 − i1, a2 − i2, ..., ap − ip), with the condition that in the last

sum, the values i1, i2, ..., ip are not all zero simultaneously.

We have obtained the formula for p-dimensional dynamic programming. Let’s show how to calculate
it quite quickly. Notice that our dynamics is nothing but the number of ways to get from a cell with
coordinates (a1, a2, ..., ap) to a cell with coordinates (0, 0, ..., 0) in a p-dimensional space, if in one step we
can choose any non-empty subset of non-zero coordinates and decrease each of its coordinates by 1 (for
p = 2, this is the number of ways to reach the origin from a cell in a table, if we can move down, left,
and diagonally). For each of the p coordinates, we will create an array of 0 and 1, which will indicate how
we move along this coordinate at each step, and the size of the arrays can vary from k to p · k. Thus, we
can consider a table of size p · k, where each row will contain the moves we made for the corresponding
coordinate, and the column will denote the move number. There should be no zero columns in this table.
We will consider the size of the largest of the arrays, and then using the principle of inclusion-exclusion,
we will calculate the number of ways to arrange 0 and 1 in the table so that there are no zero columns,

and we will obtain the formula:
p·k∑

len=k

len−k∑
cnt0=0

(−1)cnt0 · Ccnt0
len · (Ck

len−cnt0)
p

Let’s denote t = len− cnt0, summing over t and cnt0, we obtain the formula
p·k∑
t=k

(Ck
t)

p
p·k−t∑
cnt0=0

(−1)cnt0 · Ccnt0
t+cnt0

Page 3 of 5

Round 7: Div 1
14 липня 2024 р

Let’s denote g(a, b) =
a∑

i=0
(−1)i · Ci

b+i. Then we need to calculate
p·k∑
t=k

g(p · k − t, t). We

can quickly answer the query of the function g(a, b) as follows: g(a, b) =
a∑

i=0
(−1)i · Ci

b+i.

Notice that if we learn to express g(a − 1, b + 1) through g(a, b) quickly, we can
solve the problem, as these are the transitions we need to make in the sum over t.
g(a+1, b−1) = C0

b+1−C1
b+2+C2

b+3−... = C0
b−(C0

b+1+C1
b+1)+(C2

b+2+C1
b+2)−... = g(a, b)−(−1)a+b·Ca

a+b−(g(a+1, b−1)−(−1)a−1·Ca−1
a)

By expressing g(a + 1, b − 1), we obtain g(a + 1, b − 1) = 1
2 · (g(a, b) − (−1)a · Ca

a+b + (−1)a−1 · Ca−1
a+b)

Thus, we obtain a solution that works in O(n · k).

Problem K. Maximize the Minimum
1. merge all into one array with indication of which array each element comes from. The minimum will
be achieved between adjacent elements taken from different arrays.

2. binary search for the answer

3. dynamic programming on the array from the first step with additional flags and prefix optimizations
in O(n).

Problem L. Permutations and Cycles (Maximum Version)
Let’s consider an identity permutation. We pair up the elements n and n− 1, as well as n− 2 and n− 3,
n − 4 and n − 5, and so on. We call a pair bad if its sum is greater than x. Let the last k pairs be bad.
Also, let a fixed point be an element that remains in its place, a movable one be an element that will be
moved to another place, a heavy element be one of the rightmost 2 · k elements, and a light element be
one of the leftmost n− 2 · k elements. Let’s consider and prove several statements:

• Two heavy elements cannot stand together - obvious (since the two smallest heavy elements form
the leftmost bad pair).

• In each bad pair, there must be at least one movable point - follows from the first statement, and
there must also be at least one light element.

• There are no fewer light elements than heavy ones.

• We can achieve the result in n − k cycles: it is enough to take the left element of each bad pair s
and swap it with the element n− s.

We will show that this is the optimal result and demonstrate the structure of the optimal permutation.
Let’s consider the following statements:

• In the optimal solution, the number of fixed points is not less than n − 2 · k. This is true, because
if there are no more than n− 2 · k− 1 fixed points left, there are 2 · k+ 1 elements remaining, from
which a maximum of k cycles can be formed, i.e., there will be no more than n−k− 1 cycles, which
is less than the found value.

• In the optimal solution, a heavy element is either a fixed point or stands in the position of a light
element. Indeed, suppose we placed a heavy element w in the position of another heavy element. In
the optimal solution, the total loss of fixed points should not exceed 2 · k. In each bad pair, there
must be a light element, so the loss is already k. Therefore, the remaining loss should not exceed k.
A heavy element must leave each bad pair, so an additional k is added to the total loss. However,
from the pair where we place our heavy element w, two heavy elements must leave (and one light
element must come) - obviously, one must vacate the position for w, and the other cannot stand
next to w. Therefore, the total loss becomes too large, and we cannot place w in the position of
another element.

Page 4 of 5

Round 7: Div 1
14 липня 2024 р

• In the optimal solution, a light element is either a fixed point or stands in the position of a heavy
element. Similarly to the proof of the previous point, a light element that should stand in the position
of another light element makes the loss too large, as it is already not less than 2 · k due to each bad
pair adding 2 to this loss.

• In the optimal solution, each bad pair contains a light and a heavy element. The proof is similar to
the previous point.

• In the optimal solution, all cycles have a length of 1 or 2.

From the previous statements, it follows that all cycles have an even length, and the type of elements
(light/heavy) alternates when traversing the cycle. Therefore, each cycle of length len results in a loss
of len fixed points, i.e., the same as could be lost in the optimal solution. However, the total number of
cycles decreases, so we end up with fewer cycles in the end.

Page 5 of 5

