
Round 6: Division 1
2 червня 2024 р

Problem A. Anime
Let’s imagine that we are watching moment t and we fix some dt as very small interval that we about to
watch. Obviously, that we will increase our interest by the value I(t) · dt. If we take a limit of an infinite
sum of these values we get a Riemann sum or simply an integral:

∫ n
0 I(t) · dt. Due to special properties of

function I(t) it is easy to calculate this integral, just find an area of trapezoids.

Now we can add the usage of buttons in our solution. Let’s again imagine that we are watching a moment
t and time interval dt. Notice that we can "change"our moment to t+ k (only if t+ k ≤ n) watch interval
dt there, and come back to moment t right after. So, we used forward button once and rewind button
once. Using the same idea we can change any moment t to some moment t′ if |t − t′| is divisible by k.
Obviously that we are interested in moment t′ that has the biggest value of I(t′).

Consider a time interval [0, 1), for some moment t ∈ [0, 1) optimal t′ will be in one of the following
intervals: {[0, 1), [k, k + 1), [2k, 2k + 1), ...}. All of these intervals is a straight line, we can find maximum
value of I(t′) by constructing a convex hull of these lines. After that it would be easy to calculate the
area under such convex hull. We can build such convex hulls by dividing our lines in to groups according
to their remainder modulo k.

Time complexity of the solution is O(n · log(n)) because we need to sort our lines in order to build convex
hulls.

Problem B. Random Interactive MST Bot
Let’s use Prim’s algorithm. For every node outside the component store a minimum edge to a node inside
the component. Find a minimal edge and add a corresponding node to our component. Then check for
other nodes if the edge between new node is minimal.

Notice, since weights are random number of updates will be small and all updates are to decrease key.

There are multiple structures that pass limits. Like:

• k − heap

• Storing minimum k elements in sorted order

• Build a directed graph on queries and ask random pair of nodes with no ingoing edges.

Problem C. Nomad Camp
Let for each pair of pastures 1 ≤ u, v ≤ n, determine whether we can gather this pastures. Let it be
boolean array canu,v.

Claim: It is be possible to gather all the people if and only if canu,v is true for each 1 ≤ u, v ≤ n.

Let dv,t be pasture u, with type t, which is closest to pasture v. It can be calculated by Dijkstra algorithm
in O(n2) or O(n2 ∗ log(n)), if for each type we run the algorithm simultaneously from each node with this
type.

Now we can build directed graph, from (u, v) make edge to (d[u][t], d[v][t]) for each t. It is easy to see that
starting from (u, v) and by jumping through this edges, and eventually we come to some posture (x, x),
postures u and v can be gathered together.

To calculate canu,v efficiently, we can solve the task backwardly. For each gathering (starting) point x,
run DFS from pair (x, x), and go through reversed edge.

Total complexity would be: O(n2) or O(n2 ∗ log(n)) for each test case.

Problem D. Data Structures Master
Build Cartesian tree. To construct the Cartesian tree, set its root to be the maximum number in
the sequence, and recursively construct its left and right subtrees from the subsequences before and

Page 1 of 6

Round 6: Division 1
2 червня 2024 р

after this number. Now maximum of segment is lca of nodes that correspond to segment ends and
g(Ai, Bj , Ck) = alca(Ai,Bj ,Ck).

Count dpv = av ∗ bv ∗ cv, where av, bv, cv is there number of elements from A,B,C that in subtree v.

Node v is lca of exactly dpv − dpl − dpr triplets, where l, r is childs nodes of v.

Queries now look like this:

• Add one to av, bv or cv on the path from v to the root.

• Find sum of av ∗ bv ∗ cv ∗ (av − ap) over all nodes.

It can be done with heavy-light decomposition and segment trees.

Problem E. Poisonous Labyrinth
Let Ov be the number of poisons in vertex v.

Let’s build a new graph. A directed edge from x to y will be drawn if the poison of type y lies on the
path between vertices where the poison of type x is located. Now, if we visit a vertex of poison x in this
graph, we must visit all vertices y that are reachable from poison x.

How to build such a graph?

To do this, you need to use Heavy-Light Decomposition (HLD) and Segment Tree. Build a regular HLD
on this tree, but give each vertex not one index in HLD, but Ov indices. On the new array obtained
from HLD, build a segment tree. Now, for each poison, you just need to draw an edge to all poisons
on certain segments in the resulting array (there will be log(n) of them), this is easily done using HLD
and segment tree, approximately O(log2(n)) edges will be added for each vertex (on each of the log(n)
segments, log(n) edges will be spent). To better understand how this is done, read articles about Heavy-
Light Decomposition.

You can also build this graph using binary lifts.

Now we have a new graph. Let’s condense this graph (i.e., compress the strongly connected components).
Now we have a directed acyclic graph.

Let D(s) be the minimum distance that needs to be covered if the vertex s was visited in the original
tree. Let there be a vertex v in the new graph, before compression it was a strongly connected component.
Let V (v) be the set of vertices that were in the strongly connected component, which in the new graph
is vertex v. Then let’s notice that for any a, b ∈ V (v), D(a) = D(b) holds, since leaving vertex a we are
obliged to visit vertex b and vice versa.

Let Deg(v) be the number of outgoing edges from vertex v in the new graph.

Let deg(v) be the degree of vertex v in the tree.

Now let’s notice that if in the new graph vertex v is reachable from vertex u, then for any x ∈ V (v) and
y ∈ V (u), D(x) ≤ D(y) holds, since we are obliged to visit vertex xifwevisitedvertexy.

From this it follows that it is not advantageous for us to start from vertices c such that c ∈ V (k) and
Deg(k) > 0.

Let’s list all h such that Deg(h) = 0, for each such h we need to calculate D(h). Write down all such h
in an array r.

Let T (ri) be all vertices of the original tree that must be visited for component ri, they will obviously
form a connected component inside the tree, let’s call it a subtree. Then let’s notice that for different ri
and rj , T (ri)∩T (rj) = ∅ holds. Therefore, for each ri, we can find D(ri) in O(|T (ri)|), since

∑
v∈r
|Tv| ≤ n.

Create new trees and solve the following problem on each tree:

“How many moves are needed to visit all vertices of the tree and return to the starting vertex?”

The answer to this problem will be the sum of the weights of all edges in the tree multiplied by two.

Page 2 of 6

Round 6: Division 1
2 червня 2024 р

Now simply take the minimum answer among all the obtained trees, and this will be the answer to our
problem.

The final time complexity is O(m log2m + n) or O(n log n) (depends on what you will use to build the
graph).

Problem F. Geometry Enjoyer
The most important observation is the fact that we can easily restore the extension of the sides of the
initial polygon. The line that goes through some two points from the input is the side of the polygon if
and only if there are k − 1 points on this line. Let’s call these lines good.

We can do it in O(n3) time by trying every possible line and counting the number of points that lie on
this line.

Now, we want to restore the initial vertices of the polygon. One of the simplest ways is to sort our good
lines by angle and find the intersection of two consecutive lines. However, this is not possible due to large
input values (calculating the cross product will result in overflow even if we use int128, and long double
can have precision errors).

Another way is to notice that our lines divide the plane into convex polygons, and one of them is the
initial one. We can make an edge between adjacent points on the line and then use these edges to traverse
our points. The first idea that comes to mind is to traverse edges in clockwise or counterclockwise order,
however, due to overflows and precision error it is hard to do. Fortunately, there are at most 20 good lines
and 190 points. Thus, we can use a recursive approach and traverse edges in every possible way. At some
point we will find a cycle of length k that uses every single good line, this cycle is the initial polygon.
Overall complexity: O(n3 + n · 2k).

Problem G. Hocolate Hame
Let us first obtain slow solution in O(n3) with dynamic programming. Let dp[p][l][r][k] be optimal answer
on segment [l, r] with player p taken k on the previous turn (p = 0, 1). Then we can calculate this value
by considering dp[p1][l + k][r][k] and dp[p1][l + k + 1][r][k + 1] in O(1).

We now optimize this approach to O(n2) as follows:

• First, observe that maximal k we can archive is O(
√
n), since

1 + 2 + . . .+ k ≤ n = k(k + 1)/2 =⇒ k ≤
√
2n.

Thus we can reduce time complexity to O(n2√n).

• Further, we note that the difference r − l does not exceed 2x after x turns, since each two moves
the difference can only be increased by 1.

So we can store all really possible pairs (l, r) (the number of them would be O(n
√
n)) and perform above

dynamic programming on these pairs only with k restricted to
√
n.

Time and memory complexity: O(n2).

Problem H. Lost Table
To solve the problem, we will use the "inclusion-exclusion"technique. Let’s start by simplifying the
problem. Suppose we need not the condition of equality of the maximum in a row or column, but the
inequality: max ≤ ai or max ≤ bi. That is, the maximum in a row or column should not exceed a
certain constant. In this case, for each cell (i, j), we can find the maximum possible value it can take,
which is min(ai, bj). So, for cell (i, j), there are min(ai, bj) choices for the value. The number of tables
satisfying the simplified problem is:

∏n
i=1

∏m
j=1min(ai, bj). Let’s consider this value as the initial answer

for convenience.

Page 3 of 6

Round 6: Division 1
2 червня 2024 р

Now we need to use the "inclusion-exclusion"technique: let’s consider in which rows the condition is
NOT guaranteed to be met and in which columns it is NOT guaranteed to be met. It is not difficult
to "almost correctly"count all such tables: first, subtract one from ai(a

′
i = ai − 1) if this row is in the

selected set (otherwise leave it unchanged), and do the same for the columns. As a result, using the same
formula as above, we can count all such tables:

∏n
i=1

∏m
j=1min(a′i, b

′
j). Unfortunately, it is possible that

the condition is not met for more than x rows and y columns. Fortunately, this can be used for the
"inclusion-exclusion"technique: consider all possible subsets of rows and columns, calculate the answer for
them, add it to or subtract it from the answer depending on the parity of the size of the subset (x+ y).
This is enough to write a slow solution.

To optimize for time, let’s get rid of "inclusion-exclusion"for columns. Let’s introduce a function: f(bj). It
will calculate the answer for column j if the maximum in it is not greater than bj . f(bj) =

∏n
i=1min(a′i, bj),

then we can expand min(a′i, bj) and write it separately for the cases when a′i ≤ bj and a′i > bj . For
convenience, we can sort the array a′. Then f(bj) = bn−kj ·

∏k
i=1 a

′
i (where k is the length of the maximum

prefix of the array a′ where the values are less than or equal to bj). In this case, the answer for the column
is: f(bj)−f(bj−1). Thus, we have eliminated "inclusion-exclusion"for columns, and now we can calculate
the answer using "inclusion-exclusion"ONLY for rows. But this solution is still slow.

For further optimizations, we need to notice how changing one element of the array a affects the function
f . Let’s consider two cases. If ai > bj , then the value of the function f(bj) does not change after decreasing
ai by one; otherwise, the value of the function is multiplied by ai−1

ai
. However, since the answer for the

column is f(bj)− f(bj − 1), in the end there will be three variants of how the answer for the column will
change.

1) ai > bj : nothing changes

2) ai = bj : f(bj)− f(bj − 1)→ ai−1
ai
· f(bj)− f(bj − 1)

3) ai < bj : f(bj)− f(bj − 1)→ ai−1
ai
· [f(bj)− f(bj − 1)]

Let’s introduce another function P (x, k). This function calculates the answer if we choose k rows with
values ai equal to x and decrease them by one. To calculate it, we need to know the number of values bi
that are strictly greater than ai (let it be bg) and equal to ai (let it be eq). It can be noticed that then
the initial answer needs to be multiplied by:

(
x− 1

x

)k·bg
·

((
x−1
x

)k · f(x)− f(x− 1)

f(x)− f(x− 1)

)eq

Now we can understand that these changes are independent for rows with different values of ai, and to
take into account the change in several different values of ai, it is enough to multiply the functions P .
Then we can use inclusion-exclusion for one value of rows, more formally, the change in the answer for a
specific value x looks as follows:

cnt∑
k=0

(−1)k · P (x, k) · Ck
cnt

Finally, it is enough to find the product of these sums for all values from the array a and multiply it by
the initial answer.

P.S. All calculations are performed modulo 109 + 7. The MTF is used for divisions and fractions. Also,
by changing the answer, we mean not the difference, but the ratio.

Problem I. Team Training
Let’s choose n positions for the first team. For fixed n positions 1 ≤ pos1 < pos2 < · · · < posn ≤ 3n,
starting from the last one, we will delete segments [posi, posi + 3) from the array. The chosen positions
are valid if and only if on every iteration we can delete the segment(the segment lies in the current array

Page 4 of 6

Round 6: Division 1
2 червня 2024 р

and doesn’t overlap). This also means that for fixed positions for the first team, positions for second and
third teams are defined unambiguously.

To choose positions for first team, starting from pos1 we can greedily choose position with higher value
so that for every 1 ≤ i ≤ n there are not less than i positions on prefix [1, 3i− 2]. Fortunately, since the
initial array is a permutation, every posi is also defined unambiguously (there is a single way to choose
positions with maximal sum).

Problem J. Reachability in a Matrix
Let Sx,y denote the set of vertices reachable from vertex v. Since this set can be large, we need something
smarter

This set can be represented as two arrays R,C of size n and m, where cell (i, j) reacble if
Ai,j + k ≤ max(Ri, Cj) or (i, j) == (x, y). To prove it build a path from (x, y) to (i, j) and look for
the value of the cell before (i, j).

How can we calculate Sx,y for all cells?

We will go in the order of increasing Ax,y from 1 to n×m and get a merge of cells Si,j on the same row
or column and with Ai,j + k ≤ Ax,y.

Merging two sets Sa,b and Sa,b is just taking maximums for every position on R and C, plus adding values
of (a, b) and (c, d).

But it still O(n + m) merges per cell. To optimize this part we can use two pointers and store merged
sets of cells in the same row/column with value Ai,j + k ≤ Ax,y. After iterating to the next Ax,y we will
need to add only one cell to its corresponding row and column.

To summarize, we can merge in O(n+m) and there will be O(n ∗m) merges. In total O(n ∗m ∗ (n+m))
to build sets.

Answering a query is simple in O(1).

Another approach is to store Sx,y as a bitset.

Problem K. Bitvzhuh
Let a, b, c, . . . , z be the initial elements. Then

• after 1 bitvzhuh we would have [ab, ac, bc, . . .] — i.e. all pairs;

• after 2 bitvzhuhs we would have [ab, ac, bc, . . . , abcd, abce, . . .] — i.e. all pairs and fours;

• . . .

i.e. after ` bitvzhuhs we would have all even combinations up to 2`. If there is a basis B of vector space
[0, 2k) in initial array a then after enough bitvzhuhs we would have all even combinations in this basis
(subspace of even combinations of a basis).

Claim: it is enough to initially have an element x in an array a which is an even combination of an
elements of basis B. Indeed, after first bitvzhuh, this even combination x xored with any element of B
will give odd combination, and it is not hard to see, that eventually all odd combinations will be attained.

But is it sufficient to find any basis B and find an even combination of B in a? Turns out – yes. In
particular, we can show, that if some basis B from a satisfy the property

“each element of a is an odd combination of elements from B”

then any other basis B0 from a satisfy this property. This can be shown with Basis exchange lemma: we
iteratively take b ∈ B−B0 and b0 ∈ B0−B and replace B → B−{b}+ {b0} which is again a basis. Then
we can ensure that B satisfy this “all elements are odd“ property. We repeat procedure until B = B0.

Page 5 of 6

Round 6: Division 1
2 червня 2024 р

To find basis we use Gauss algorithm which works in O(nk) since row operations are bit operations.

Altenative solution Consider the set A = {a1 ⊕ a2, a2 ⊕ a3, . . . , an−1 ⊕ an}. If dimension of a linear
span of A is k then the answer is yes, otherwise – no.

Page 6 of 6

