
Stage 5: Division 1, March 5, 2023

Problem A. Reversing

Author: Sunghyeon Jo (ainta)

Observe that, a cell’s initial state should be the same as the current state if there is an adjacent cell that

has different color. If all adjacent cells are the same color with current cell, then it could be either white or

black at the initial state. Therefore, if there are total C cells that all adjacent cells have the same color with

themselves, then the answer is 2C .

Problem B. Lawyers

Author: Sunghyeon Jo (ainta)

Make a digraph G = (V,E) such that (A,B) ∈ E if and only if lawyer A can defend lawyer B. The goal is

determining whether it is possible to choose edges such that every vertex has positive indegree and no two

edges with the same two endpoints and opposite direction are selected.

If (u, v) ∈ E, (v, u) /∈ E satisfies, then it is always advantageous to select (u, v). Make it selected and remove

all such edges (u, v) from G. Mark vertex v as it has a positive degree.

After removing edges, all edges are pairs of opposite edges. Consider edges as bidirectional.

If a connected component has at least one marked vertex u, then there is a spanning tree T . It could be

seen as a directional rooted tree with u and selecting edges in the tree guarantees that every vertex of the

component has positive indegree.

Also, if a connected component with k vertices has at least k edges, then there will be at least one edge

not included in a spanning tree T . Select the edge of any direction will make a marked vertex, so it can be

resolved as former case.

The only remaining case is there is a connected component with k vertices and k−1 edges and has no marked

vertex. Since only k − 1 edges can be selected, it is not possible to select edges to satisfy the condition.

Problem C. One, Two, Three

Author: Sunghyeon Jo (ainta), Jeyeon Si (tlwpdus)

First, let’s limit the form of the answer. If we consider a candidate answer where (1 2 3) and (3 2 1) are

well-arranged so that they don’t overlap, it is nothing worse to push 1 in (1 2 3) as far to the left as possible

and 3 as far as possible to the right. Similarly, (3 2 1) would be nice to push the 3 as far to the left and the

1 as far to the right.

Let A be the number of matches (1 2 3), B be the number of matches (3 2 1). Then it is sufficient to consider

only answers in which the first A one and the last A threes are matched together and the first B threes and

the last B ones are matched together.

Think of two (1 2 3) matching x and y. If the order of ones in x and y do not agree with order of twos in x

and y (i.e. 1 in x is left from 1 in y but 2 in x is right from 2 in y), it is possible to swap two 1s in x and y.

Likewise, if order of threes do not agree with order of twos, it is possible to swap two 3s. By such swapping

Stage 5: Division 1, March 5, 2023

process, we can obtain an ordered matching: for any two (1 2 3) matching x and y, the relational order of

position of same number in x and y are same for 1, 2, and 3.

Accumulating the above observations, We can construct an algorithm that determines if it is possible to

make A of (1 2 3) matchings and B of (3 2 1) matching:

1. If there is less than a+ b ones, it is impossible to make it. The same is applied to two and three, too.

2. Since there is at least a+ b of each kind of numbers, the first a ones and last b threes are disjoint with

the last b ones and the first b threes. By observation of ordered matching, we know which ones and

threes should be in the same matching.

3. The remaining problem is to assign 2 for each matched pair of 1 and 3. 2 should be located between 1

and 3. It is just a matching problem between points and segments (ranges between 1 and 3), so it is

can be solved in linear time after sorting.

The algorithm above gives O(N3) solution for the original problem, and it can be reduced into O(N2 logN)

and O(N2) using the monotone property of possible (A,B) pairs. But there should be more observation to

solve it in linear or near-linear time.

Assuming A and B are given. As suggested in the algorithm, it can be expressed as bipartite matching of

twos and ranges between (1 3) or (3 1) pairs. See ranges as vertices on the left(L) and each 2 as vertices

on the right (R) in the bipartite graph. There is an edge between u ∈ L and v ∈ R if and only if 2 of v is

included in range u. We want to know the existence of a matching of size A+B = |L|.

As Hall’s marriage theorem states, matching of size |L| exists if and only if when |N(S)| ≥ S holds for

every S ⊂ L. It means that for any k ranges in L, there is at least k twos that included in at least one of

the k ranges.

Let’s define some notations:

• Define F (l, r) as number of ranges in L which included in range [l, r).

• Define 1i as |{j|Aj = 1, j < i}|, 2i as |{j|Aj = 2, j < i}| , 3i as |{j|Aj = 3, j < i}|

And we can see the following observations:

• Matching of size |L| exists if and only if F (l, r) ≤ 2r − 2l(0 ≤ l ≤ r ≤ N)

”only if” is induced directly from Hall’s theorem. ”if” holds since we can focus only on contiguous ranges.

How to calculate F (l, r) efficiently? Let’s considering only (1 3) ranges. as A increases, F (l, r) increases like

0, 0, .., 0, 1, 2, 3, 4, Precisely, from A = (number of ones left to l) + (number of threes right to r), F (l, r)

increases by 1. It can be formulated as max(A−1l− (3N −3r), 0). Likewise, number of (3 1) ranges included

in [l, r) is max(B − 3l − (1N − 1r), 0).

Therefore, F (l, r) = max(A− 1l − (3N − 3r), 0) + max(B − 3l − (1N − 1r), 0)

So, we want to find (A,B) with maximum A+B such that

F (l, r) = max(A− 1l − (3N − 3r), 0) + max(B − 3l − (1N − 1r), 0) ≤ 2r − 2l holds.

This can be divided into four inequalities:

Stage 5: Division 1, March 5, 2023

• A− 1l − (3N − 3r) +B − 3l − (1N − 1r) ≤ 2r − 2l

• A− 1l − (3N − 3r) ≤ 2r − 2l

• B − 3l − (1N − 1r) ≤ 2r − 2l

• 0 ≤ 2r − 2l

The last one is vaguously true, and first three can be restated as:

• A+B ≤ min0≤l≤r≤N (1l + 3N − 3r + 3l + 1N − 1r + 2r − 2l)

• A ≤ min0≤l≤r≤N (1l + 3N − 3r + 2r − 2l)

• B ≤ min0≤l≤r≤N (3l + 1N − 1r + 2r − 2l)

The right-hand side of each inequality is can be calculated in O(N) by calculating minimum/maximum of

prefix/suffix. Among the (A,B) satisfying those inequalities, we can find the one with maximum A + B

easily.

After finding (A,B), we can construct the answer as we stated at first.

Overall, we can solve this problem in linear time.

Problem D. Lonely King

Author: Sunghyeon Jo (ainta)

First of all, when a blue path is changed into a red edge, there is no case that it causes more contact than

before. The initial state is a directed rooted tree. If there is an edge into a non-leaf vertex v in the final

states, there must be an edge from v too, so it could be merged to an edge. Therefore, there is an optimal

final state in which every edge’s endpoint is a leaf vertex of the initial tree.

With this in mind, the problem is to divide the edges of the directed rooted tree into paths (u, v) where v

should be a leaf of the initial tree, and the goal is to minimize the
∑

CuCv.

If there is a red edge (u, v) is a final state, let’s call v connected to u. Consider a vertex u which is not the

root. Let’s call subtree with root u Tu. Then there is exactly one leaf node in Tu which is connected to u’s

ancestors.

From this, we can think a dynamic programming solution like below:

• D[u][l]: minimum cost could be achived when l is the leaf connected to u’s ancestors.

• D[u][l] = min(D[x][l] +
∑

(D[c][lc] + CuClc))

where x is u’s child node which is ancestor of l and c is all other childs of x. lc is a leaf node minimizes

D[c][lc] + CuClc .

For every leaf l in the subtree Tu, consider a line of y = Cl · x+D[u][l]. We can see that only the lower hull

of the lines are used in above DP formula. If we have lower hull of those lines for each Tc for u’s child c,

then we can calculate lower hull for Tu.

We can see that lines consisting lower hull of Tu is union of lines of Tc where c is child of u, shifted along

the direction of y-axis.

Stage 5: Division 1, March 5, 2023

Since merging two lower hull of size A and B can be done in O(min(A,B) logmin(A,B)) time with a data

structure like set of balanced BST, the whole process can be done in O(Nlog2N) time (small-to-large trick).

Problem E. Treasure Box

Author: Sunghyeon Jo (ainta)

First, if the initial state is a palindrome, the answer is 0. Otherwise, let given string as S[1 N]. Let b be the

smallest i where S[i] is different from S[N + 1− i],and e = N − b+ 1.

we know that to make a given string a palindrome, we need to swap either b-th character or e-th character.

Also, since there is no reason to replace the characters outside the [b, e] range, if H[i] is the HP to be

consumed when the starting position is i,

• If i < b then H[i] = H[b] + C(b− i)

• If i > e then H[i] = H[e] + C(i− e)

holds.

So we only need to solve the problem when the starting point is in [b, e]. Considering the case of replacing

b-th character among b-th and e-th, the possible paths when the starting position is the x-th character can

be classified into the following two types.

• x → r → b (if you go from x to the right and then to the left to get to b)

• x → b → r (if you move left from x to b and then right)

In both cases, it needs to be possible to make a string into a palindrome by replacing only the characters of

[b, r], and if [b, r] includes both corresponding characters in the palindrome, choosing the one which consumes

less HP is always an advantage.

We can pre-store the array P [r], the HP required to replace the characters to make a palindrome when

considering interval [b, r]. When x is given, minrP [r] +C(r− x) +C(r− b) is the optimal value of the path

x → r → b. Likewise, minrP [r] + C(x − b) + C(r − b) is the optimal value of the path x → b → r. And it

can be computed in O(N) time for all x if x is moving by one space to the left starting from e.

The case replacing e-th character instead of b-th can calculated in the same way if we think symmetrically.

Therefore, we can solve this problem in O(N) time.

Problem F. Beautiful Sequence

Author: Sunghyeon Jo (ainta)

A sequence of N integers, A1, ..., AN is given. The goal is to rearrange the sequence to maximize the number

of elements which is not less than adjacent elements.

For 1 ≤ k ≤ N , call k a beautiful position if it satisfies Ak−1 ≤ Ak ≥ Ak+1 (Assume A0 = AN+1 = −INF).

Otherwise, call k a awful position.

Stage 5: Division 1, March 5, 2023

Let awful positions be i1, i2, · · · , im and i0 = 0, im+1 = N+1. Since ik+1, ..., ik+1−1 are beautiful position,

Aik ≤ Aik+1 = Aik+2 = · · · = Aik+1−1 ≥ Aik+1
must be satisfied.

To maximize the beauty of the sequence, m, number of the awful positions should be minimized.

Sequence with at mostm awful positions can be generated by rearranging if it is possible to choose V1, · · · , Vm

as:

1. Among the N elements of A1, · · · , AN , choose m numbers V1 ≤ V2 ≤ · · · ≤ Vm. They will be numbers

that will be placed in a awful position.

2. Let U as a sorted set of not selected elements without duplication. U = {U1, .., Uk}, Ui < Ui+1.

3. Vi ≤ Ui(1 ≤ i ≤ min(m, k)) must be satisfied.

4. k ≤ m+ 1 must be satisfied.

Alternating sequence of U1, V1, U2, V2, · · · is a beautiful sequence with possibly m awful positions since each

Ui is not smaller than Vi and Vi−1. Replacing each Ui to its copies (to make this sequence {Ai}’s permu-

tation) do not increase awful positions. Therefore, there is a rearrangement of {Ai} which has at most m

awful positions.

Conversely, if it is possible to rearrange given sequence into a sequence with at most m awful positions, then

it is possible to choose {Vi} as suggested above. It is could be done by assigning {Vi} as all numbers in awful

positions.

For example, whenA = [2, 1, 3, 1, 4, 1, 5, 1, 6], by choosing V = [1, 2, 3], we can obtainA′ = 1, 1, 1,1, 6,2, 5,3, 4

with 3 awful positions.

Then how to find minimum m such V1, · · · , Vm exists?

Let A’s distinct elements as a1 < · · · < ak and ci be the occurrence of ai in A.

Starting from empty sequence and empty V and W (W is the multiset of elements not in V), we will add ci

copies of ai to the sequence from i = 1 to i = k and add elements to V if needed.

Assume that after adding ci copies of ai, the condition |V | + 1 < (number of different kinds of numbers in

W) holds. Then we need to select an element in W and move it to V .

In order to minimize the addition of elements to V, (number of different kinds of numbers in W) should be

minimized. Thus, it is optimal to choose the number with least occurrence in W and add it to V when V

needs more elements.

After executing above process from i = 1 to i = k, |V | is the minimum possible value of number of awful

positions and the maximum beauty can be calculated directly.

The whole process above can be done in O(N logN) time by using data structures like priority queue.

Therefore, the whole problem is can be solved in O(N logN) Time.

Problem G. Make Everything White

Author: Sunghyeon Jo (ainta)

Stage 5: Division 1, March 5, 2023

It is enough to use only operation 2 and operation 3. Consider state of the grid M after executing operation

2 for all cells. If a cell’s color is black in M , then changing its color to white without changing other cells

could be done by replacing the operation 2 on the cell by operation 3. Therefore, after doing operation 2

on white cells in M and doing opration 3 in black cells in M , we could obtain a grid with every cell colored

white.

Problem H. Optimal Quadratic Function

Author: Sunghyeon Jo (ainta)

For two functions f, g which has error < K, f+g
2 has error < K. Therefore, we can use ternary search for a

and b, the coefficient of the quadratic term and linear term.

Let the absolute or relative error as ε and the range of coordinates as L. Then we can solve this problem

with time complexity O(N log2(L/ε)).

However, it is not easy to handle floating point precision in this problem. If we naively use the formula

f(x) = ax2+ bx+c, the c could be massive, like O(L2) scale. Therefore, it is not easy to avoid wrong answer

in this way.

Among the given N points, let the maximum value of x be xr and minimum value of x be xl. Let f(x) =

a(x− l)(x− r) + b(x− l) + c.

When f is the optimal quadratic function, following holds for l ≤ x ≤ r:

• maxi|f(xi)− yi| ≤ maxi(|yi − 0|) ≤ L

• |c| = |f(l)| ≤ L+ |yi| ≤ 2L

• |b(x− l)| ≤ |b(r − l)| = |f(r)− c| ≤ L+ |y − c| ≤ 4L

• |a(x− l)(x− r)| ≤ |f(x)− b(x− l) + c| ≤ y + |f(x)|+ |b(x− l)|+ |c| ≤ 8L

Therefore, if we use above formula for f and do ternary search, the scale of whole terms are O(L) scale so it is

possible to avoid big precision error. And we can prove that it is enough to use f(x) = a(x− l)2+b(x− l)+c,

too. So that we can solve the problem after shifting each the xi by −x1, and just use ternary search for

f(x) = ax2 + bx+ c.

The time complexity O(N log2(L/ε)) can be reduced into O(N log(L/ε)).

Use ternary search for a, so assume that a is fixed.

Then our goal is decide b, c to minimize maximum of |f(xi)− yi| = |a(xi)
2 − yi + bxi + c|.

And if b fixed, minimized maximum of |f(xi)−yi| is 0.5× (difference between min and max of bxi+a(xi)
2−yi)

Let zi = a(xi)
2 − yi. we want to choose b that minimizes the difference between min and max of bxi + zi.

And the min and max of bxi + zi are from convex hull of (xi, zi). If we use rotating calipers algorithm on

this, finding optimal b can be done in O(N) time.

Therefore, we can solve whole problem in O(N log(L/ε)) time due to ternary search for a.

Note: For O(N log(L/ε)) algorithm, the precision error could be bigger than slower one, so long double

should be used to manage it.

Stage 5: Division 1, March 5, 2023

Challenge: there seems linear solution using linear programming: link

Problem I. Visiting Friend

Author: Sunghyeon Jo (ainta)

Build a block-cut tree of the graph T = (V,E), where V is union of original vertices and biconnected com-

ponents and E is set of (v, b) where v is vertex included in the biconnected component b.

Assume that A and B are not in ancestor-descendant relationship in the block-cut tree. Then, the answer

is N - (number of original vertices in subtree of A) - (number of original vertices in subtree of B) since we

can’t visit vertex B from the verticies in the subtree of A without visiting A, and vice versa.

It can be handled similarly even if A is B’s ancestor or converse case.

Problem J. Cooperation Game

Author: Sunghyeon Jo (ainta)

If there are students from same class with indices a1 < a2 < · · · < ak, then it is best to come out in order of

(a1, ak), (a2, ak−1), · · · . From this we can make pairs of students and decide orders of pairs from the same

class.

For four indices a < b < c < d, we can get the same score regardless of order of pair (a, c) and (b, d). Also,

if there is (a, d) and (b, c) then (a, d) should be executed before (b, c).

Therefore, it is optimal to do them in order of the largest difference between the indices of the two students

forming a pair.

Problem K. Connect the Dots

Author: Sunghyeon Jo (ainta)

We can bend the Ox axis to a circle and consider the problem as about the connecting points on the circle.

The condition of two different curves cannot have a common interior point is equivalent to two chords of the

circle cannot have a common interior point.

First, consider only chords between adjacent points. If two adjacent points have different colors, then it is

always better to connect the two.

Then we can think of chords between non-adjacent points. since it can be considered as a diagonal of N -gon,

there could be at most N − 3 such chords.

Lemma 1. If there is at least 3 different colors, it is always possible to draw N − 3 chords satisfying all

conditions.

https://theory.stanford.edu/~megiddo/pdf/lplin.pdf

Stage 5: Division 1, March 5, 2023

Proof. Group points as blocks, a contiguous points with same colors. If there is at least 3 different colors, 3

adjacent blocks A,B,C with different color always exists. If we read color of the points in those blocks, it is

like ”AA...ABB...BBC..CC”. Draw chords between last A and second, third, ... , last B, and the first C. If

the number of points of block B is nB , then after drawing chords, we can see the new state as block B has

removed (so nB vertices removed) and nB new chords added.

Also, think of draw chords between last A and second, third, ... , last B, but not first C. then after drawing

chords, we can see the new state as only one point of block B remaining (so nB − 1 vertices removed) and

nB − 1 new chords added.

We can think above two operations as AA..AABB..BBCC..CC⇒AA..AACC..CC and AA..AABB..BBCC..CC

⇒ AA..AABCC..CC.

By executing these two operations, it is possible to leave only one points for each color. Then drawing all

chords from one vertex is enough.

Construction by above process can be done in O(N) by data structures like linked list.

Since there will be no chords when there is only one color exists, the only case remaining is when only two

color has used.

When only 2 colors were used, then the graph is a bipartite graph so there is no odd cycle and the possible

shortest length of the cycle is 4. Let the number of the blocks C. Then, the upper bound of number of the

chords (including chords between adjacent points) is N − 2+C/2. This is because if the colors of the points

are alternating, then C = N and the maximum number of chords is 3N/2− 2 by Euler’s formula. And it is

not difficult to find way to construct N − 2 + C/2 chords.

Time complexity: O(N)

	Problem A. Reversing
	Problem B. Lawyers
	Problem C. One, Two, Three
	Problem D. Lonely King
	Problem E. Treasure Box
	Problem F. Beautiful Sequence
	Problem G. Make Everything White
	Problem H. Optimal Quadratic Function
	Problem I. Visiting Friend
	Problem J. Cooperation Game
	Problem K. Connect the Dots

