
2023 Stage 9: Division 2
Solutions

The Judges

Jul 9, 2023

2023 Stage 9: Division 2 Solutions 1 / 26

Air Race

Problem
Simulate a paper airplane flying with a fading wind.

Solution
This problem requires carefully following the rules stipulated in the
problem. It should suffice to translate the rules directly into code.
The easiest way to compute

⌊
x
10

⌋
is to use integer division. In

languages like C++ and Java, x / 10 when x is a positive integer will
automatically give the result rounded down. In Python 3, x // 10
will do the same.

Problem Author: Nick Wu 2023 Stage 9: Division 2 Solutions 2 / 26

Business

Problem
You are given an array of n integers. Your goal is to partition the array
into subarrays of size k (except for possibly the first and last subarray)
such that as many subarrays as possible have positive sum. Though
n ≤ 3 · 104, k can only take on 103 distinct values.

Initial Observations
Because k can only take on a small number of values relative to n,
this hints at brute-forcing all possible valid values of k .
If we precompute prefix sums - specifically f (i) is the sum of the first i
integers in the array for 0 ≤ i ≤ n, we can compute the sum of all
elements in an arbitrary subarray in O(1) time. Specifically, the sum
of the subarray starting at index a and ending at index b is exactly
equal to f (b + 1)− f (a).

Problem Author: Bowen Yu 2023 Stage 9: Division 2 Solutions 3 / 26

Business

Solution
For a fixed starting point and a subarray size k , we can compute the
number of subarrays with positive sum in O

(
n
k

)
time.

Checking all k possible starting points for a subarray of size k
therefore takes O(n) time.
Checking all possible values of k , this algorithm therefore runs in
O(nk) time.

Problem Author: Bowen Yu 2023 Stage 9: Division 2 Solutions 4 / 26

Cookie Production

Problem
You want to make a chocolate chip cookie. In a given turn, you add
some cookie squares to your existing cookie. A given square can only
be added if it is on the boundary of the cookie or if some adjacent
square is not yet filled with a cookie. Compute the minimum number
of turns needed to construct the chocolate chip cookie.

Initial Observations
It seems difficult to know which squares we can fill in first.
However, if we consider the last turn, we know which squares cannot
be filled in on the last turn - any square which is surrounded by cookie
on all four sides must be filled in prior to the last turn.
Therefore, we can consider the reverse process of “eating" the cookie
in the minimum number of turns, where a cookie square can be eaten
if it is on the boundary or some adjacent square is empty.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 5 / 26

Cookie Production

Soluton
We can solve this other problem using breadth-first search. All squares
that are on the boundary or have some adjacent square empty are
initialized to a turn counter of 1, and all other squares are set to a
turn counter of infinity.
We maintain a queue of squares we are processing, initialized with the
squares that have a turn counter of 1.
Remove a square from the queue, and if any adjacent squares have a
turn counter of infinity, update the turn counter to 1 more than the
current turn counter, and append that square to the queue.
The answer is the maximum turn counter over all squares.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 6 / 26

 Delicious Waffle

Problem
A waffle maker rotates 180 degrees every r seconds. A blueberry
waffle is inserted with the blueberries pointing up. After f seconds,
the waffle maker stops and rotates strictly fewer than 90 degrees back
to horizontal. Are the blueberries pointing up or down?

Solution
The waffle maker makes a full rotation every 2r seconds. Therefore,
we can take f modulo 2r . If f is less than r

2 or greater than 3r
2 , then

the blueberries are pointing up. When f is equal to r
2 or 3r

2 , which is
not allowed in the problem, the waffle maker is exactly vertical. When
f is greater than r

2 and less than 3r
2 , the blueberries are pointing down.

Problem Author: Howard Cheng 2023 Stage 9: Division 2 Solutions 7 / 26

Effective Management

Problem
You are given a ternary array. You are to construct a ternary array
where all 0’s are contiguous, all 1’s are contiguous, and all 2’s are
contiguous. Maximize the number of indices where your constructed
array matches the given array.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 8 / 26

Solution
There are O(n2) different ternary arrays you can construct, so
checking all of them is too slow.
However, if we construct our ternary array from left to right, the only
information that matters is what integers have been used so far in our
constructed ternary array and what the last added element is.
Therefore, with dynamic programming, we can maintain the maximum
number of integers we can match conditioned on having assigned the
first i integers, the set of ternary integers we have used so far, and
what the ith integer in our ternary array is.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 9 / 26

Friends Visit

Problem
Given n ≤ 1 000 days, the amount of mess is increased by mi each
morning, and you can clean ci amount of mess in the afternoon,
determine the minimum number of afternoons you have to spend
cleaning so that on d queried nights the mess is zero.
Divide the days into segments in which the family visits on the last day.
Each segment is then an independent subproblem of the same type. In
each segment, the mess should be zero by the end of the last day.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 10 / 26

Friends Visit

Solution 1: Greedy
On the last afternoon, if the mess is greater than zero, then you must
clean on the last day; if the mess is already zero by then, you don’t
have to clean on the last day and can save an option of cleaning on
the last day to remove mess created on previous days.
Now consider a previous afternoon when the mess is greater than zero,
you will have an option to clean on that day, along with all the
cleaning options that you saved for the following days. Among those
options, you should pick the cleaning with the largest ci , until the
mess becomes zero.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 11 / 26

Friends Visit

Solution 1: Greedy
This yields a greedy solution working backwards: Initialize an empty
cleaning option set S and total mess t = 0. For each day in reverse,
add mi to t and ci to S . If t > 0, pick the largest values from S to
reduce t to zero. The number of values picked corresponds to the
number of afternoons spent cleaning.
If we maintain S using a BBST or a heap, this greedy algorithm runs
in O(n log n). The low constraints of the problem also allows you find
the max value from S in linear time, so that O(n2) also passes.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 12 / 26

Friends Visit

Solution 2: DP
Let f (i , k) be the max amount of mess we can have starting on day i ,
such that we can clean k times in the following days and have no mess
by the end of the last day. Assume the last day is day n.
f (i , k) < 0 means it’s impossible to clean all mess by day n. In terms
of arithmetics we treat any negative value as negative infinity.
We have:

f (i , k) = max

f (i + 1, k)−mi if i < n

(don’t clean on day i)
f (i + 1, k − 1) + ci −mi if i < n, k > 0

(clean on day i)
ci −mi if i = n and k > 0
−mi if i = n and k = 0

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 13 / 26

Friends Visit

Solution 2: DP
Find the smallest k as our final answer such that f (1, k) ≥ 0. This
can be done by iterating k incrementally.
There are O(n2) DP states in total and the transition takes constant
time. Therefore the DP solution runs in O(n2) time and space.

Problem Author: Travis Meade 2023 Stage 9: Division 2 Solutions 14 / 26

Giant Walkway

Problem
Given a list of strings and multiple pairs of strings, compute for each
pair of strings how many strings are between the paired strings.

Solution
It is too slow to do a linear scan for each string for each query pair.
Instead, we maintain a map from string to the index it is at in the list.
We then output |a− b| − 1, where a and b are the indices of the two
strings in the pair.

Problem Authors: Nick Wu 2023 Stage 9: Division 2 Solutions 15 / 26

Hunting The Eclipses

Problem
The sun and the moon align for an eclipse occasionally. It was ds years
ago when the sun was last in the right place, and dm years ago when
the moon was last in the right place. The sun is in the right place
once every ys years, and the moon is in the right place once every ym
years. When will the next eclipse happen?

Solution
We are guaranteed that an eclipse will happen in the next 5000 years.
Therefore, we can check the years starting from one year in the future
and check if the sun and moon will be in the right place - y is a valid
year for an eclipse if (y + dm) is divisible by ym and (y + ds) is
divisible by ys .
There is a faster solution using the Chinese Remainder Theorem, but
this was not required to solve the problem.

Problem Author: Nick Wu 2023 Stage 9: Division 2 Solutions 16 / 26

Interesting Puzzle

Problem
You have n + 1 tubes each with the capacity to hold three balls.
There are 3n balls distributed among the tubes, three balls each of n
distinct colors. In a single move, you can take a ball from one tube
and move it on top of all the other balls in a tube that has fewer than
three balls in it. In 20n moves or fewer, get all tubes to be either
completely empty or have all three balls of some color.

Solution
There are many different approaches to get this to happen within 20n
moves. We’ll outline one approach that fills in the left n tubes. This
solution will operate in multiple phases.

Problem Author: Zachary Friggstad 2023 Stage 9: Division 2 Solutions 17 / 26

Initialization
We start by emptying the rightmost tube, arbitrarily moving balls from
there into tubes to the left that have space. This takes at most three
moves.
We proceed by making tube 1 be monochromatic, at which point
future moves will not interact with it at all. We need to be able to
perform this in fewer than 20 moves due to the overhead we incurred.

Making the Leftmost Tube Monochromatic
Let the bottom ball in the leftmost tube have color c . We will move
all balls with color c into this tube.
If the tube is already monochromatic, we’re done.
If the topmost ball has color c and the middle one doesn’t, we can
reverse the two balls as follows:

Problem Author: Zachary Friggstad 2023 Stage 9: Division 2 Solutions 18 / 26

Making the Leftmost Tube Monochromatic, continued
Let the leftmost tube be l , the rightmost tube with balls be r , and the
empty tube be e. Move a ball from r to e, the topmost ball with color
c into e, the middle ball from l to r , the topmost ball with color c
from e to l , and the last ball from e back to l . This takes five
operations.
Now, it remains to move balls from other tubes into the leftmost tube.
If such a ball is not the bottom-most ball in its tube, we can remove
the incorrect balls out of tube l into e, any balls above that ball into
e, and then move that ball directly into l . Moving all balls back into
e, this takes at most seven moves to fix one ball.
If such a ball is the bottom-most ball in its tube, we can reverse the
entire tube by moving all balls into tube e, at which point we can
apply the above logic to move balls out of l until we can take the
(now topmost ball) from e and move it into l . This takes at most
eight moves.

Problem Author: Zachary Friggstad 2023 Stage 9: Division 2 Solutions 19 / 26

Juggle With Dice

Problem
You are given a list of three-letter words. Is it possible to construct
three dice such that, for each word, it is possible to arrange the dice in
such a way that the top faces can form the word? All 18 possible
letters on the three dice must be distinct.

Initial Observations
If a word has two or more identical letters, it is impossible.
If 19 or more distinct letters appear over all words, it is impossible.
If fewer than 18 distinct letters appear, we can pick arbitrary unique
letters that do not appear to fill in the other faces.
If letters α and β appear in the same word, they must appear on
different dice.

Problem Author: Howard Whitston 2023 Stage 9: Division 2 Solutions 20 / 26

Juggle With Dice

Solution
If the faces and dice are all distinguishable, there are 18! ways to
arrange the letters.
The faces of a die are indistinguishable before adding letters, so we
can divide out a factor of 6!.
The dice are also indistinguishable before adding letters, so we can
divide out a factor of 3!.
This leaves us with 18!

(6!)3·3! = 2858856 combinations to try.

We can use recursive backtracking to enumerate and try all of these,
pruning when an assignment is clearly invalid.
Though not necessary to solve the problem, we can recursively try
assigning the letters that have the most constraints first to prune the
search space.

Problem Author: Howard Whitston 2023 Stage 9: Division 2 Solutions 21 / 26

Kitchen

Problem
You have n different blades. Blade i can cut pieces of size at most mi ,
cutting them in half in hi seconds. Blades reduce the size at an
exponential rate. Compute the minimum number of seconds needed to
convert food that is originally size t to size s.

Solution
For a given piece size, we want to use the blade with the minimal hi
rate. We can ignore blades where mi ≤ s or mi > t.

We need to be able to solve the equation t · 0.5
x
hi = s for x . Taking

logarithms, we can show that x =
hi ·log(t

s)
log 2 .

We need to reevaluate the best blade for all mi values in [s, t]. We
can do this by maintaining the blades sorted by their mi values. It is
too slow to enumerate all eligible blades for each check.

Problem Author: Andy Nguyen 2023 Stage 9: Division 2 Solutions 22 / 26

Logistics Manager

Problem
In a rooted tree, people navigate through the tree by always traveling
to the descendant with the lowest ID. n people start at the root and
wish to get to specific destinations, traveling through the tree in order.
Before each person starts traveling, you can permanently delete some
edges from the tree. Compute the index of the first person who
cannot make it home.

Initial Observations
Use the Euler tour technique to represent the tree. Specifically, DFS
through the tree in sorted order of children. Let sv be the time when
we first see vertex v in the DFS, and let ev be the time when we
return from vertex v in the DFS.
We are therefore looking for the first vertex v where there exists a
vertex u appearing before v in the destination order list where ev < su.

Problem Author: Lewin Gan 2023 Stage 9: Division 2 Solutions 23 / 26

Logistics Manager

Solution
If we compute the Euler tour of the tree, we can simply loop over the
destination vertices in order, track the maximum sv we have seen, and
see when some ev is less than the maximum ev seen prior.
Note that it is not strictly necessary to compute the Euler tour
beforehand and then loop over the destination vertices in order. We
can perform a preorder traversal of the tree. Prior to returning from
the recursive call from a vertex v , we can visit any vertex that is in the
call stack of the DFS, so we can loop over destination vertices until we
see one we cannot visit.

Problem Author: Lewin Gan 2023 Stage 9: Division 2 Solutions 24 / 26

Making The Palindromes

Problem
You are given a string of lowercase letters. In a single operation, you
take two adjacent characters and mutate both of them. Compute the
minimum number of operations needed to make the string a
palindrome.

Initial Observations
If the outermost characters match, neither should be changed.
If the outermost characters do not match, it is not always optimal to
make them match with one operation! The sample case vetted shows
this - we need more than 2 operations if we make the outermost
characters match, but we can do 2 operations by doing vetted to
gutted to guttug.

Problem Author: Nick Wu 2023 Stage 9: Division 2 Solutions 25/ 26

Making The Palindromes

Solution
We can solve this with dynamic programming. We can reduce this
problem to the following - you are given a binary string where in a
single operation, you look at two adjacent indices - a 1 must be
flipped to a 0, whereas a 0 can stay as either a 0 or be changed to a 1.
Your goal is to make the string be all 1’s.
To solve this problem, you can maintain for a state of the form (length
of prefix that is all 1’s, whether the next bit has been forcibly flipped)
the minimum number of operations needed to get to that state.
To convert the original problem to this reduced one, construct the
binary string from left to right by looping over pairs of characters in
the original string from the outside going to the middle, adding a 1 if
the characters match and a 0 if they don’t.

Problem Author: Nick Wu 2023 Stage 9: Division 2 Solutions 26 / 26

