
Problem Solutions

Contour
Author: Robin

Overview

● We have a series of up to 4 sections of

a hill, with various inclines and sloped

distances.

● Each section starts from where the last

left off.

● Given a formula for acceleration, find

the final speed of a bike if it starts at the

top of any of the segments.

Contour- Solution

Techniques

● Trigonometry

● Mechanics

Algorithm

● Say we start off at speed v0 and finish at speed vd (after D metres).

● Integrate the formula for acceleration:

○ vd = v0 + gt×cos(θ)

○ d = v0t + ½gt2×cos(θ) ... + C

● Solve for t:

○ ½gt2×cos(θ) + v0t - d = 0

○ t = (-v0±√(v0
2+2gd×cos(θ))) / (g×cos(θ))

○ Substitute back in, iterate over line segments

● Or:

○ Potential energy Ep = mgh

○ Kinetic energy Ek = ½mv2

■ v∞ = sqrt(2×g×h)

First Counter

Author: Robin

Overview

● Given

○ 1 list A of observations of an

event at one time scale factor

○ 1 list B of when all events

happened at another time scale

factor

● Find all of the scale factors that could

plausibly be applied to B to get a

substring that equals A.

● Example:

○ 1,2,3

○ 3,4,5,7,9

■ 3,4,5 = 1,2,3 × 1 + 2

■ 5,7,9 = 1,2,3 × 2 + 1

First Counter - Solution

Techniques

● String matching

● Fractions

Algorithm

● Let’s look at a base case: checking N times against N distances.

○ We can work out the speed from (d1 - d0) ÷ (t1 - t0)

○ Now we need to compare the speed for every pair:

 (d1 - d0) ÷ (t1 - t0) = (dx+1 - dx) ÷ (tx+1 - tx)

 or

 (tx+1 - tx) ÷ (tx - tx-1) = (dx+1 - dx) ÷ (dx - dx-1)

○ What’s important is the ratio between current distance and

previous distance.

● The strings of M and N symbols are equivalent to strings of M-2

and N-2 fractions which should have exact matches.

● From here it’s regular string comparison

○ Knuth Morris Pratt / Boyer Moore / Rabin Karp

○ Or since N is so small, brute force works too.

Hungover

Author: Jim

Overview

● We have a collection of beers

○ Various costs

○ Various alcohol contents

○ Various sizes of glass

● We have targets:

○ Spend a certain amount of money

○ Drink a certain amount of alcohol

● We need to find a way of meeting these

targets exactly by choosing a list of

orders

○ Some can be chosen several

times

○ Some can be ignored

Hungover - Solution

Techniques

● Fixed-point arithmetic

● Knapsack problem

● Depth-first search

● Memoisation

Algorithm

● Imagine a straightforward depth-first search:
○ def solve(i, units_left, money_left):

 if units_left <= 0 or money_left <= 0 or i >= n:

 return [] if (units_left | money_left) ==

0 else None

 sol_with = solve(i, units_left-units[i], money_left-

price[i])

 sol_without = solve(i+1, units_left, money_left)

 if sol_with is not None:

 return [beer] + sol_with

 elsif sol_without is not None:

 return sol_without

 else:

 return None

● Q: How many possible sets of parameters can this take?

○ A: O(N) × O(U) × O(M) = O(NUM)

● Memoise answers to overlapping subproblems:
○ if already_solved[i][units_left][money_left]:

 return answer_for[i][units_left][money_left]

KeyWord Log

Author: Jim

Overview

● Given a set of specifications like:

● key1 value1 value2 value3

● key2 value4 value5 value6

● Find the values that belong to every

single key.

● Among these values, sort them:

● By frequency descending.

● Break ties lexicographically.

KeyWord Log - Solution

Techniques

● String chopping

● Hash maps

● Sort by key

● Schwartzian transform

Algorithm

● We need two pieces of information about each word:

○ Which users it was associated with (for filtering)

○ How many times it appeared (for sorting)

● Map each username to an integer

○ Every time we encounter a new word, initialise a structure:
struct Word {

 string text;

 int freq = 0;

 set<UserId> users;

 bool operator < (Word const &other) const {

 return freq != other.freq ? freq > other.freq :

 text < other.text;

 }

}

● Update each word on a line by adding the userId to its set

● Filter for users.count() == MAX_USER_ID, sort, and print!

