Problem Solutions

Overview

e We have a series of up to 4 sections of
a hill, with various inclines and sloped
distances.

e Each section starts from where the last

Contour eft off.

e Given a formula for acceleration, find
the final speed of a bike if it starts at the

Author: Robin top of any of the segments.

Contour- Solution

Techniques Algorithm
e Trigonometry e Say we start off at speed v, and finish at speed v, (after D metres).
e Mechanics e Integrate the formula for acceleration:

o V4=V, +gtxcos(B)

o d=yv,t+%gt?xcos(®) ... + C
e Solve fort:

o Yegt?xcos(B) +v,t-d=0

o t=(-vytv(vy2+2gdxcos(0))) / (gxcos(B))

o Substitute back in, iterate over line segments
o Or

Potential energy E, = mgh
o Kinetic energy E, = amv?
m V., =sqrt(2xgxh)

First Counter

Author: Robin

Overview

e Given
o 1 list A of observations of an
event at one time scale factor
o 1 list B of when all events
happened at another time scale
factor
e Find all of the scale factors that could
plausibly be applied to B to get a
substring that equals A.

e Example:
o 1,2,3
o 34579

m 345=123x1+2
m 579=123x2+1

First Counter - Solution

Techniques

String matching
Fractions

Algorithm

e Let'slook at a base case: checking N times against N distances.
o We can work out the speed from (d, - dy) + (t;- t,)
o Now we need to compare the speed for every pair:
(dy-dg) + (t1-tg) = (dysr- dy) + (tesr - 1)
or
(tx+1 } tx) = (tx' tx-1) - (dx+1) dx) = (dx' dx-1)
o What's important is the ratio between current distance and
previous distance.
e The strings of M and N symbols are equivalent to strings of M-2
and N-2 fractions which should have exact matches.
e From here it's regular string comparison
o Knuth Morris Pratt / Boyer Moore / Rabin Karp
o Orsince N is so small, brute force works too.

Hungover

Author: Jim

Overview

e We have a collection of beers
o Various costs
o Various alcohol contents
o Various sizes of glass
e We have targets:
o Spend a certain amount of money
o Drink a certain amount of alcohol
e We need to find a way of meeting these
targets exactly by choosing a list of

orders
o Some can be chosen several
times

o Some can be ignored

Hungover - Solution
Algorithm

Techniques
e Fixed-point arithmetic
e Knapsack problem
e Depth-first search
e Memoisation

Imagine a straightforward depth-first search:
o def solve(i, units_left, money_ left):
if units_left <= @ or money_left <= @ or i >= n:
return [] if (units_left | money left) ==
@ else None
sol with = solve(i, units_left-units[i], money_left-
price[i])
sol without = solve(i+1, units_left, money_ left)
if sol_with is not None:
return [beer] + sol with
elsif sol without is not None:
return sol_without
else:
return None

Q: How many possible sets of parameters can this take?
o A:O(N) x O(U) x O(M) = O(NUM)
Memoise answers to overlapping subproblems:

o if already_solved[i][units_left][money_left]:
return answer_for[i][units_left][money_left]

Overview

e Given a set of specifications like:
e key1 value, value, value,
e key2 value, value; valueg

e Find the values that belong to every
KeyWord Log

e Among these values, sort them:
e By frequency descending.
e Break ties lexicographically.

Author: Jim

KeyWord Log - Solution

Techniques
e String chopping
e Hash maps
e Sort by key
e Schwartzian transform

Algorithm

We need two pieces of information about each word:
o Which users it was associated with (for filtering)
o How many times it appeared (for sorting)

Map each username to an integer

o Every time we encounter a new word, initialise a structure:
struct Word {
string text;
int freq = 0;
set<UserId> users;
bool operator < (Word const &other) const {
return freq != other.freq ? freq > other.freq :
text < other.text;
}
}

Update each word on a line by adding the userld to its set
Filter for users.count() == MAX_USER_ID, sort, and print!

