Cup Ukainian of Programming

Find substrings of given strings s and t with the largest similarity.

1, C1 = C

Define match(ci, c2) = {0, .

1, C1 = C

0, a#a
We use DP. dp; ; — the largest similarity between a substring of s
ending at index /, and a substring of j ending at index j.

Define match(ci, c2) =

A. ACTG Matrix

L, a=c

0, a#c

We use DP. dp; ; — the largest similarity between a substring of s
ending at index /, and a substring of j ending at index j.

dp; j is the maximum of the following:

Define match(ci,) =

o max(0, dpj_1,j—1) + match(s;, tj);

A. ACTG Matrix

L, a=c

0, a#c

We use DP. dp; ; — the largest similarity between a substring of s
ending at index /, and a substring of j ending at index j.

dp; j is the maximum of the following:

Define match(ci,) =

o max(0, dpj_1,j—1) + match(s;, tj);
° dpj—1;—1, dpij-1—1.

A. ACTG Matrix

L, a=c

0, a#c

We use DP. dp; ; — the largest similarity between a substring of s
ending at index /, and a substring of j ending at index j.

dp; j is the maximum of the following:

Define match(ci,) =

o max(0, dpj_1,j—1) + match(s;, tj);
° dpj—1;—1, dpij-1—1.

The answer is max; jdp; ;. Complexity is O(]s| - [t]).

I T
B. Boundary String

Given is a description of a proper rectilinear polygon boundary, as a
sequence of left and right turns. Find the smallest bounding box
area.

It is guaranteed the intersection of any vertical line with the
polygon interior is a segment (or empty).

B. Boundary String

The restriction tells us about the structure of the polygon: the
boundary can be split into the lower and upper halves, both
monotonic in x-coordinate (always go right and up/down).

A B C D E F G H | J K L
oo oeo 000 oo 000 000 [ele} 0000 oo oo 000 000

B. Boundary String

The restriction tells us about the structure of the polygon: the
boundary can be split into the lower and upper halves, both
monotonic in x-coordinate (always go right and up/down).

Let us represent each half as a left-to-right sequence of their
horizonal sides. Polygons matching the description can be obtained
by choosing both width (horizontal span) and height
(y-coordinate) of each horizontal side, so that:

A B C D E F G H | J K L
oo oeo 000 oo 000 000 [ele} 0000 oo oo 000 000

B. Boundary String

The restriction tells us about the structure of the polygon: the
boundary can be split into the lower and upper halves, both
monotonic in x-coordinate (always go right and up/down).

Let us represent each half as a left-to-right sequence of their
horizonal sides. Polygons matching the description can be obtained
by choosing both width (horizontal span) and height
(y-coordinate) of each horizontal side, so that:

o The total widths of both boundary halfs are equal.

A B C D E F G H | J K
oo oeo 000 oo 000 000 [ele} 0000 oo oo 000

B. Boundary String

The restriction tells us about the structure of the polygon: the
boundary can be split into the lower and upper halves, both
monotonic in x-coordinate (always go right and up/down).

Let us represent each half as a left-to-right sequence of their
horizonal sides. Polygons matching the description can be obtained
by choosing both width (horizontal span) and height
(y-coordinate) of each horizontal side, so that:

o The total widths of both boundary halfs are equal.

o At any x-coordinate the upper half is strictly higher than the
lower half.

000

A B C D E F G H | J K L
oo oeo 000 oo 000 000 [ele} 0000 oo oo 000 000

B. Boundary String

The restriction tells us about the structure of the polygon: the
boundary can be split into the lower and upper halves, both
monotonic in x-coordinate (always go right and up/down).

Let us represent each half as a left-to-right sequence of their
horizonal sides. Polygons matching the description can be obtained
by choosing both width (horizontal span) and height
(y-coordinate) of each horizontal side, so that:

o The total widths of both boundary halfs are equal.

o At any x-coordinate the upper half is strictly higher than the
lower half.

o For any pair of consecutive horizontal sides in a boundary
half, one should be strictly higher/lower than the other
depending on the turn directions at those sides.

B. Boundary String

Suppose that the height H of the bounding box is fixed. It is best
to place the lower half as low as possible, and the upper half as
high as possible, while respecting restrictions on adjacent sides.

B. Boundary String

Suppose that the height H of the bounding box is fixed. It is best
to place the lower half as low as possible, and the upper half as
high as possible, while respecting restrictions on adjacent sides.

This defines the heights of all sides unambiguously. We only need
to determine the smallest total width.

A B C D E F G H | J K L
oo ooe 000 oo 000 000 [ele} 0000 oo oo 000 000

B. Boundary String

Suppose that the height H of the bounding box is fixed. It is best
to place the lower half as low as possible, and the upper half as
high as possible, while respecting restrictions on adjacent sides.

This defines the heights of all sides unambiguously. We only need
to determine the smallest total width.

This can be done with DP. dp; ; = the smallest width of a polygon
containing i and j leftmost sides from the lower/upper half
respectively.

A B C D E F G H | J K L
oo ooe 000 oo 000 000 [ele} 0000 oo oo 000 000

B. Boundary String

Suppose that the height H of the bounding box is fixed. It is best
to place the lower half as low as possible, and the upper half as
high as possible, while respecting restrictions on adjacent sides.

This defines the heights of all sides unambiguously. We only need
to determine the smallest total width.

This can be done with DP. dp; ; = the smallest width of a polygon
containing i and j leftmost sides from the lower/upper half
respectively.

Transitions are to either include a new side in one half, or new
sides in both. Make sure the halfs don't intersect.

A B C D E F G H | J K L
oo ooe 000 oo 000 000 [ele} 0000 oo oo 000 000

B. Boundary String

Suppose that the height H of the bounding box is fixed. It is best
to place the lower half as low as possible, and the upper half as
high as possible, while respecting restrictions on adjacent sides.

This defines the heights of all sides unambiguously. We only need
to determine the smallest total width.

This can be done with DP. dp; ; = the smallest width of a polygon
containing i and j leftmost sides from the lower/upper half
respectively.

Transitions are to either include a new side in one half, or new
sides in both. Make sure the halfs don't intersect.

Since DP is O(n?), and H = O(n), this is an O(n%) solution.

For a convex polyhedron P, find the volume of the set Py of points
at distance at most d from the polyhedron.

Each point p € P4 we put in one of four possible groups based on
where the closest point g € P is:

Each point p € Py we put in one of four possible groups based on
where the closest point g € P is:

o g is strictly inside the polygon (when p also is);

C. Convex Shell

Each point p € P, we put in one of four possible groups based on
where the closest point g € P is:

o g is strictly inside the polygon (when p also is);
o g is strictly inside a polygon face;

C. Convex Shell

Each point p € P, we put in one of four possible groups based on
where the closest point g € P is:

o g is strictly inside the polygon (when p also is);
o g is strictly inside a polygon face;

o q is strictly inside a polygon edge;

C. Convex Shell

Each point p € P, we put in one of four possible groups based on
where the closest point g € P is:

o q is strictly inside the polygon (when p also is);
o q is strictly inside a polygon face;
o q is strictly inside a polygon edge;

o g is a polygon vertex.

For each group we compute the volume:

o q is strictly inside the polygon (when p also is).
The volume is equal to the volume of P.

C. Convex Shell

For each group we compute the volume:

o q is strictly inside the polygon (when p also is).
The volume is equal to the volume of P.

o g is strictly inside a polygon face.
A face of area S contributes S - d to the answer.

C. Convex Shell

For each group we compute the volume:

o q is strictly inside the polygon (when p also is).
The volume is equal to the volume of P.

o q is strictly inside a polygon face.
A face of area S contributes S - d to the answer.

o q is strictly inside a polygon edge.
Each edge contributes /- d? - (1 —), where | is the edge
length, « is the dihedral angle between faces adjacent to the
edge.

A B C D E F G H | J K
oo 000 ooe oo 000 000 [ele} 0000 oo oo 000

C. Convex Shell

For each group we compute the volume:

o q is strictly inside the polygon (when p also is).
The volume is equal to the volume of P.

o q is strictly inside a polygon face.
A face of area S contributes S - d to the answer.

o g is strictly inside a polygon edge.
Each edge contributes /- d? - (1 —), where | is the edge
length, « is the dihedral angle between faces adjacent to the
edge.

o g is a polygon vertex.
For each vertex, the region is a ball wedge. These wedges can

be combined to form a single ball of radius d, thus the total
volume is %ﬂd3.

000

D. Determine The Lap Length

There is a lap of unknown integer length L < 10°. We can make
queries: run k more meters around the lap, get the total number of
completed laps so far. Find L in at most 100 queries.

D. Determine The Lap Length

For an arbitary x, how can we check if L < x7 Let D be the total
distance we ran so far, and kx > D be the closest multiple of x.
Query kx — D, and check that the number of laps is > k.

D. Determine The Lap Length

For an arbitary x, how can we check if L < x7 Let D be the total
distance we ran so far, and kx > D be the closest multiple of x.
Query kx — D, and check that the number of laps is > k.

Now, binary search, keeping track of the total travelled distance.
log, 109 ~ 30 queries.

E. Empires

There is a graph, with vertices divided between three empires. For
each empire, build the smallest number of bases in its vertices, so
that for each other vertex a base is reachable when vertices of a
single other empire become impassable.

E. Empires

Consider empire 1, and block all cities of empire 2. Number the
resulting connected components from 1 to X, and for each city i of
empire 1 let x; denote the index of its connected component.

E. Empires

Consider empire 1, and block all cities of empire 2. Number the
resulting connected components from 1 to X, and for each city i of
empire 1 let x; denote the index of its connected component.

By blocking empire 3's cities, we produce numbers y; between 1
and Y in the same way.

A B C D E F G H | J K L
oo 000 000 oo oeo 000 [ele} 0000 oo oo 000 000

E. Empires

Consider empire 1, and block all cities of empire 2. Number the
resulting connected components from 1 to X, and for each city i of
empire 1 let x; denote the index of its connected component.

By blocking empire 3's cities, we produce numbers y; between 1
and Y in the same way.

The task now becomes: choose the smallest number of vertices,
such that for each x = 1,..., X at least one vertex with x; = x is
chosen (same for y;).

Construct a bipartite graph with X and Y vertices in respective
halves. For each vertex i, connect vertices x; and y;. Note that the
graph has O(n) vertices and edges.

E. Empires

Construct a bipartite graph with X and Y vertices in respective
halves. For each vertex i, connect vertices x; and y;. Note that the
graph has O(n) vertices and edges.

We are looking the minimum edge cover in this graph. It can be
found by taking a maximum matching, and covering remaining
vertices with a separate edge each.

A B C D E F G H | J K L
oo 000 000 oo ooe 000 [ele} 0000 oo oo 000 000

E. Empires

Construct a bipartite graph with X and Y vertices in respective
halves. For each vertex i, connect vertices x; and y;. Note that the
graph has O(n) vertices and edges.

We are looking the minimum edge cover in this graph. It can be
found by taking a maximum matching, and covering remaining
vertices with a separate edge each.

Find maximum matching with Kuhn's algorithm. Repeat for
empires 2 and 3 similarly. Complexity is O(m + n?).

For a given convex polygon, find the expected Manhattan distance
between uniformly chosen points inside the polygon.

By linearity of expectation, find expected difference between
x-coordinates and y-coordinates independently, and sum them up.

F. Finish Time Expectation

By linearity of expectation, find expected difference between
x-coordinates and y-coordinates independently, and sum them up.

Consider an infinitesimal segment [x, x 4+ dx]. It contributes to the
x-distance when one point is to the left of x, and the other is to

the right.

A B C D E F G H | J K L
oo 000 000 oo 000 oeo [ele} 0000 oo oo 000 000

F. Finish Time Expectation

By linearity of expectation, find expected difference between
x-coordinates and y-coordinates independently, and sum them up.

Consider an infinitesimal segment [x, x + dx]. It contributes to the
x-distance when one point is to the left of x, and the other is to
the right.

Let S be the polygon area, and L(x) be the area to the left of
coordinate x. The answer is then equal to

Xmax D[(x)(S — L(x
[2 L,

min

F. Finish Time Expectation

Observe that L(x) is a piecewise linear function between adjacent
x-coordinates, thus the integrand is piecewise quadratic. The
integral for each piece can then be found analytically.

F. Finish Time Expectation

Observe that L(x) is a piecewise linear function between adjacent
x-coordinates, thus the integrand is piecewise quadratic. The
integral for each piece can then be found analytically.

Swap x's with y's and repeat to find the expected y-distance.

F. Finish Time Expectation

Observe that L(x) is a piecewise linear function between adjacent
x-coordinates, thus the integrand is piecewise quadratic. The
integral for each piece can then be found analytically.

Swap x's with y's and repeat to find the expected y-distance.

Big decimals are highly recommended.

Given are n bit strings of equal length. Build a decision tree of
minimum height that can distinguish the given strings by single
character lookups.

Subset DP. For S C {1,..., n}, let dps be the smallest possible
height of a tree distinguishing strings from S.

G. Generate Optimal Tree

Subset DP. For S C {1,..., n}, let dps be the smallest possible
height of a tree distinguishing strings from S.

Let Sjo, Sj1 be the partition of S based on the character j. Then
we have dps = 1 + min; max(dps; ,, dps; ;) (unless |S| =1, when
dps = 0).

G. Generate Optimal Tree

Subset DP. For S C {1,..., n}, let dps be the smallest possible
height of a tree distinguishing strings from S.

Let Sjo, Sj1 be the partition of S based on the character j. Then
we have dps = 1 + min; max(dps; ,, dps; ;) (unless |S| =1, when
dps = 0).

Note that if, say, Sj0 = S, then looking at character j is useless,
and such transitions should be skipped.

A B C D E F G H | J K
oo 000 000 oo 000 000 oe 0000 oo oo 000

G. Generate Optimal Tree

Subset DP. For S C {1,..., n}, let dps be the smallest possible
height of a tree distinguishing strings from S.

Let Sjo, Sj 1 be the partition of S based on the character j. Then
we have dps = 1 + min; max(dps; ,, dps; ;) (unless |S| =1, when
dps = 0).

Note that if, say, Sjo = S, then looking at character j is useless,
and such transitions should be skipped.

The tree for S can be reconstructed by taking argmin j in the
recurrence formula, and reconstructing answers for S; o, Sj 1.

000

A B C D E F G H | J K
oo 000 000 oo 000 000 oe 0000 oo oo 000

G. Generate Optimal Tree

Subset DP. For S C {1,..., n}, let dps be the smallest possible
height of a tree distinguishing strings from S.

Let Sjo, Sj 1 be the partition of S based on the character j. Then
we have dps = 1 + min; max(dps; ,, dps; ;) (unless |S| =1, when
dps = 0).

Note that if, say, Sjo = S, then looking at character j is useless,
and such transitions should be skipped.

The tree for S can be reconstructed by taking argmin j in the
recurrence formula, and reconstructing answers for S; o, Sj 1.

Complexity O(2"n|s|), or O(2"|s|) with bitsets.

000

There are n cacti in a row, i-th having height h;. Process queries:
if rain falls on a segment [L, R], how much water will be collected?

For a query [L, R], water will be kept at height h; to the left/right
of cactus i if the rightmost/leftmost closest cactus j higher or
equal than h; is outside of the segment.

H. Heavy Rain

For a query [L, R], water will be kept at height h; to the left/right
of cactus i if the rightmost/leftmost closest cactus j higher or
equal than h; is outside of the segment.

The water profile is bitonic: left part of it is non-decreasing, and
right part is non-increasing. For each query, let's find both parts
independently.

S Ge G % G Do S Gwe s s Ge ke
H. Heavy Rain

To find the left non-decreasing part, use monotonic stack.
Consider cacti n,..., 1, and for the current position L maintain a
stack n =1 > ... > jx = L of indices of cacti that are higher than
any cactus to their left we've seen so far. To introduce cactus

L —1, pop several elements from the stack while h; < h;_;, and
push L — 1.

A
oo

B C D E F G H | J K L
000 000 oo 000 000 [ele} ooeo oo oo 000 000

H. Heavy Rain

To find the left non-decreasing part, use monotonic stack.
Consider cacti n,..., 1, and for the current position L maintain a
stack n =1 > ... > jx = L of indices of cacti that are higher than
any cactus to their left we've seen so far. To introduce cactus

L — 1, pop several elements from the stack while h;, < h;_;, and
push L — 1.

Now, for any query [L, R], cacti in the left part of the profile are a
suffix of the monotonic stack. Process queries offline by decreasing
of L, and use binary search to find the relevant suffix. If we
additionally store prefix sums of h;, x (js — js4+1), we can then
compute the area of the left part of the profile. Subtract the range
sum of h; to find out the amount of water.

H. Heavy Rain

Repeat the algorithm in the other direction to find the right part of
the profile. If there are several highest cacti between L and R,
additionally add water kept between them.

H. Heavy Rain

Repeat the algorithm in the other direction to find the right part of
the profile. If there are several highest cacti between L and R,
additionally add water kept between them.

Complexity of this solution is O(n + qlog n).

[. Improved Werewolf

Given an array, process queries:

o add x to elements in a range with indices in arithmetic
progression spaced 2 or 3;

o find RMQ in a range [/, r];
o erase /-th element;

o insert a previously erased element to its original relative
position, and set it to 0.

[. Improved Werewolf

Let's split the array into 6 subarrays, based on their indices modulo
6. The add operation then affects some of the remainders modulo
6, and is a “range add” operation in each of the subarrays.

[. Improved Werewolf

Let's split the array into 6 subarrays, based on their indices modulo
6. The add operation then affects some of the remainders modulo
6, and is a “range add” operation in each of the subarrays.

RMQ can be transformed into 6 RMQ for subarrays.

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oe oo 000 000

|. Improved Werewolf

Let's split the array into 6 subarrays, based on their indices modulo
6. The add operation then affects some of the remainders modulo
6, and is a “range add” operation in each of the subarrays.

RMQ can be transformed into 6 RMQ for subarrays.

To erase an element, split the subarrays at its position, rearrange
and attach the suffixes accordingly. Insert an element in a similar
way.

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oe oo 000 000

|. Improved Werewolf

Let's split the array into 6 subarrays, based on their indices modulo
6. The add operation then affects some of the remainders modulo
6, and is a “range add” operation in each of the subarrays.

RMQ can be transformed into 6 RMQ for subarrays.

To erase an element, split the subarrays at its position, rearrange
and attach the suffixes accordingly. Insert an element in a similar
way.

All this can be done if each of the subarrays is stored in, say, a
treap, for ~ 6log n operations per query.

T T .
J. Juggle Sort

Process given in the statement is equivalent to the following:

Given an array, perform operations sequentially. If the leftmost
element is (one of the) largest in the array, erase it. Otherwise, pay
1 coin and move it to the right end. Proceed until the array is
empty.

How many coins will be paid?

J. Juggle Sort

Suppose that the array is initially empty. Consider all elements by
decreasing, in groups of equal numbers. Insert numbers in each
group to their relative positions, and see how the score updates.
Maintain a position i of the element that will be erased last, as
well as the number ¢ of coins we pay for this element.

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oo oe 000 000

J. Juggle Sort

Suppose that the array is initially empty. Consider all elements by
decreasing, in groups of equal numbers. Insert numbers in each
group to their relative positions, and see how the score updates.
Maintain a position j of the element that will be erased last, as
well as the number ¢ of coins we pay for this element.

If we insert a new group, its elements will be erased cyclically
starting from the leftmost element to the right of i (if any).
Elements to right of i infer a cost of ¢ each, while elements to the
left i infer cost ¢ 4+ 1 each. Thus, we can update the costs, as well
as values of / and c.

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oo oe 000 000

J. Juggle Sort

Suppose that the array is initially empty. Consider all elements by
decreasing, in groups of equal numbers. Insert numbers in each
group to their relative positions, and see how the score updates.
Maintain a position j of the element that will be erased last, as
well as the number ¢ of coins we pay for this element.

If we insert a new group, its elements will be erased cyclically
starting from the leftmost element to the right of i (if any).
Elements to right of i infer a cost of ¢ each, while elements to the
left i infer cost ¢ 4+ 1 each. Thus, we can update the costs, as well
as values of / and c.

This is easily implemented in O(nlog n) time.

S Ge S % G Do S G s s e e
K. King And Toll Roads

There is a graph with n vertices. Vertices / and i + 1 are adjacent
for each i =1,...,n— 1 (trivial edges), and m extra (non-trivial)
edges are present.

We can make two edges have cost 1 to travel through. What is the
largest sum of pairwise smallest travel costs we can achieve?

If the answer is not zero, then removing both toll edges should
make the graph disconnected.

K. King And Toll Roads

If the answer is not zero, then removing both toll edges should
make the graph disconnected.

Since all vertices are pairwise reachable by trivial edges, at least
one of the toll edges should be trivial.

K. King And Toll Roads

If the answer is not zero, then removing both toll edges should
make the graph disconnected.

Since all vertices are pairwise reachable by trivial edges, at least
one of the toll edges should be trivial.

Consider a few cases:

o Both toll edges are bridges (and thus trivial).

A B C D E F G H | J K
oo 000 000 oo 000 000 [ele} 0000 oo oo oeo

K. King And Toll Roads

If the answer is not zero, then removing both toll edges should
make the graph disconnected.

Since all vertices are pairwise reachable by trivial edges, at least
one of the toll edges should be trivial.

Consider a few cases:

o Both toll edges are bridges (and thus trivial).
We can check for each trivial edge i <> i + 1 if its a bridge
with Tarjan's algorithm, or simply by checking that no
non-trivial edge xy satisfies x </ <i+1<y.
Suppose we cut away A leftmost vertices and B rightmost
vertices. The answer is then A(n — A) + B(n — B).
The answer is maximized when both toll bridges are closest to
the middle n/2.

o Neither of the toll edges is a bridge, but removing both of
them makes the graph disconnected (a 2-bridge).

K. King And Toll Roads

o Neither of the toll edges is a bridge, but removing both of
them makes the graph disconnected (a 2-bridge).
Relation “two edges are a 2-bridge” is an equivalence relation.
Equivalence classes can be found with advanced DFS, or with
randomized cycle space approach.

A B C D E F G H | J K
oo 000 000 oo 000 000 [ele} 0000 oo oo ooe

K. King And Toll Roads

o Neither of the toll edges is a bridge, but removing both of
them makes the graph disconnected (a 2-bridge).
Relation “two edges are a 2-bridge” is an equivalence relation.
Equivalence classes can be found with advanced DFS, or with
randomized cycle space approach.
In this graph, each equivalence class consists of several trivial
edge, and at most one non-trivial edge (when present, it
connects leftmost and rightmost parts of the graph with
respect to trivial edges).

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oo oo ooe 000

K. King And Toll Roads

o Neither of the toll edges is a bridge, but removing both of
them makes the graph disconnected (a 2-bridge).
Relation “two edges are a 2-bridge” is an equivalence relation.
Equivalence classes can be found with advanced DFS, or with
randomized cycle space approach.
In this graph, each equivalence class consists of several trivial
edge, and at most one non-trivial edge (when present, it
connects leftmost and rightmost parts of the graph with
respect to trivial edges).
Choosing two best edges in each class reduces to finding a
segment in the sequence of part sizes that is closest to n/2,
and can be done with two pointers.

A B C D E F G H | J K
oo 000 000 oo 000 000 [ele} 0000 oo oo ooe

K. King And Toll Roads

o Neither of the toll edges is a bridge, but removing both of
them makes the graph disconnected (a 2-bridge).
Relation “two edges are a 2-bridge” is an equivalence relation.
Equivalence classes can be found with advanced DFS, or with
randomized cycle space approach.
In this graph, each equivalence class consists of several trivial
edge, and at most one non-trivial edge (when present, it
connects leftmost and rightmost parts of the graph with
respect to trivial edges).
Choosing two best edges in each class reduces to finding a
segment in the sequence of part sizes that is closest to n/2,
and can be done with two pointers.

This results in O(nlog n) solution.

L. LTE Broadcasting Stations

Basically:

There are n points in the real line. We can add directed edge from
point x; to point x;, paying f(|x; — x;|), where f(D) = D|v/D].
For each h=1,...,n—1, find the smallest cost of constructing a
rooted tree with height at most h.

Let d(x;) be the distance from x; to the root in the tree.
Let p(x;) = x; — the coordinate of the parent of the point x;
(undefined for the root).

L. LTE Broadcasting Stations

Let d(x;) be the distance from x; to the root in the tree.
Let p(x;) = x; — the coordinate of the parent of the point x;
(undefined for the root).

Claim
In an optimal answer the subtree of each vertex forms a contiguous
segment of points.

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oo oo 000 oeo

L. LTE Broadcasting Stations

Let d(x;) be the distance from x; to the root in the tree.
Let p(x;) = x; — the coordinate of the parent of the point x;
(undefined for the root).

Claim
In an optimal answer the subtree of each vertex forms a contiguous
segment of points.

Proof sketch: assuming the contrary, there are points x; < x2 < x3
such that xi, x3 are in the subtree of a point x (maybe one of
x1,x3) , but xp is not.

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oo oo 000 oeo

L. LTE Broadcasting Stations

Let d(x;) be the distance from x; to the root in the tree.
Let p(x;) = x; — the coordinate of the parent of the point x;
(undefined for the root).

Claim
In an optimal answer the subtree of each vertex forms a contiguous
segment of points.

Proof sketch: assuming the contrary, there are points x; < x2 < x3
such that xi, x3 are in the subtree of a point x (maybe one of
x1,x3) , but xp is not.

WLOG assume x > xo.

If d(x2) < d(x), we can improve by making x> an ancestor of x; by
changing its, or one of its ancestors’ parent to x.

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oo oo 000 oeo

L. LTE Broadcasting Stations

Let d(x;) be the distance from x; to the root in the tree.
Let p(x;) = x; — the coordinate of the parent of the point x;
(undefined for the root).

Claim
In an optimal answer the subtree of each vertex forms a contiguous
segment of points.

Proof sketch: assuming the contrary, there are points x; < x2 < x3
such that xi, x3 are in the subtree of a point x (maybe one of
x1,x3) , but xp is not.

WLOG assume x > xo.

If d(x2) < d(x), we can improve by making x> an ancestor of x; by
changing its, or one of its ancestors’ parent to x.

If d(x2) > d(x), we can improve by making x an ancestor of x,.

We can now find the answer with subsegment DP.

L. LTE Broadcasting Stations

We can now find the answer with subsegment DP.
Let dp[/, r, h, p] be the smallest cost to construct a rooted tree of
height at most h, and connect the root of this tree to:

o nothing, if p=0;
ol—1,ifp=1,;
or+1,ifp=2.

%o Bo G % o bw G G o 0 ow Gor
L. LTE Broadcasting Stations

We can now find the answer with subsegment DP.
Let dp[/, r, h, p] be the smallest cost to construct a rooted tree of
height at most h, and connect the root of this tree to:

o nothing, if p=0;
ol—1,ifp=1,;
or+1,ifp=2.

Then, say,
dp[l, r, h,0] = mjy dp[l,i—1,h—1,2] + dp[i + 1,r,h—1,1],

and p = 1,2 differ by an extra summand f(|x; — x/_1|) or
F(Ixi — xr41])-

A B C D E F G H | J K L
oo 000 000 oo 000 000 [ele} 0000 oo oo 000 ooe

L. LTE Broadcasting Stations

We can now find the answer with subsegment DP.
Let dpl/, r, h, p] be the smallest cost to construct a rooted tree of
height at most h, and connect the root of this tree to:

o nothing, if p=0;
o/—-1,ifp=1,;
or+1,ifp=2.

Then, say,
dp[/,l’,h,O] = mj?dp[lvl_ 17h_ 172]+dp[l+1>rah_ 171]a

and p = 1,2 differ by an extra summand f(|x; — xj_1|) or
F(Ixi — xr41])-

The answer for height h is dp[1, n, h,0]. This results in O(n*)
complexity.

	A
	

	B
	

	C
	

	D
	

	E
	

	F
	

	G
	

	H
	

	I
	

	J
	

	K
	

	L
	

