
Stage 6: Division 1
17 липня 2022 р.

Problem Tutorial: “Factory Balls”
We would like to apply a breadth-first search, but there are too many states to run a BFS on: each region
has one of the K colors, and each piece of equipment is either equipped or unequipped, leading to KN2M

states in total.

However, if the color of a certain region does not match the target color, then the exact color does not
matter. All we need for each region is whether the color matches the target or not. Therefore each region
has only two “colors.” This reduces the number of states to 2N+M and the time complexity of the BFS to
O(2N+M (KN +M)). To represent each state, we can use a pair of bitmasks (or a single bitmask if you
combine them).

Using bitwise operators more cleverly, We can do even better by immersing the ball into a paint can in
O(1) time, leading to O(2N+M (K +M)).

Problem Tutorial: “Distance Optimizing Triangulation”
If you simply add N − 3 edges from vertex 1 to vertices 3, 4, . . . , 2N − 1, then the shortest path between
any two vertices has length at most 2. This immediately gives a solution with value at most 2N − 1. The
value can’t be less than N , so it lies somewhere in [N, 2N − 1].

Let’s denote arc i as an arc that connects vertices xi and yi. Consider another graph of N vertices, where
each arc is a vertex, and two vertices are connected by an edge if and only if the corresponding arcs
intersect. For each connected component of this graph, apply the above solution independently: Take
any vertex in the component, and connect it with all others. This solution is valid because no arcs are
intersecting (the convex hulls of each connected component do not intersect). The value of this solution
is 2N minus the number of connected components.

Now we show that we can’t do better. Let’s think about a different (yet similar) problem. We start with
2N vertices and no edges in a planar graph. We need to add the minimum number of edges between those
vertices so that the graph remains planar and all vertices of the same color are connected.

In this problem, the answer is at least 2N minus the number of connected components. The arcs that
belong to the same connected component belong to the same connected component in that planar graph
as well, so we have the upper bound on the number of connected components in the planar graph we build.
Even if we assume that each connected component is a tree (that has the smallest number of edges), we
need at least 2N minus the number of connected components.

Let’s show that the original problem has an answer not less than in the modified problem. If we mark the
shortest path between xi and yi in the augmented graph, this corresponds to the solution for the modified
problem. Obviously, the number of the marked edges is not greater than the sum of the shortest paths.

Now what remains is to implement the above algorithm efficiently. The naive implementation of finding
the connected components takes O(N2) time. There are numerous ways to improve this algorithm. One
way is to use segment trees for doing DFS efficiently in the graph. Another way is to use hashes. Let
x1, x2, . . . , xn be random 64-bit integers. Then each connected component is a minimal partition where
the XOR of all vertices is zero. Iterate through the vertices in order, and maintain the XOR sum of all
vertices encountered. If you find the duplicated value of such XOR sum, you have found a connected
component, which you can delete and continue.

Also, remember that you may need to add some redundant edges in the graph because you must print
exactly 2N − 3 edges.

Problem Tutorial: “UCP-Clustering”
The RC of two clusters uniquely defines the set of next RC of two clusters, and such next RC can be
computed in O(N) time by computing the median in linear time. Therefore, the states and their transition
takes the shape of a functional graph, where every node has an outdegree of one. Since the algorithm is
guaranteed to terminate, every initial node will eventually reach a vertex that self-loops. The expected
value of the iteration count can be considered as the average distance from all initial states that can reach

Page 1 of 7

Stage 6: Division 1
17 липня 2022 р.

the current loop. Since the graph takes the shape of a tree, this can be easily computed.

As a result, we can obtain a conceptually simple (though possibly tedious to implement) O(MN) solution
where M is the number of states. Naively, M = O(N8), since there are O(N2) possible values that each
coordinate can take. However, we show how to obtain a much tighter upper bound.

Draw a line between the current RCs, and consider the perpendicular bisector. The bisector divides
the plane into two halfplanes. Then, the points belonging in each halfplane are the clusters in the next
iteration. As a result, for all states with in-degree greater than zero, there exists a dividing line between
each cluster.

Suppose that two clusters have a dividing line. Then we can rotate the line until it hits the points from
both clusters. The lines touch two points from the input and define a unique cluster. As a result, there are
at most O(N2) states with in-degree greater than zero. States with in-degree zero are exactly the valid
initial state, of which there are N(N − 1)/2 possible candidates.

As a result, we obtain an O(N3) algorithm.

If you want a challenge, you can try to optimize the above algorithm to O(N2 logN).

Problem Tutorial: “Triple Sword Strike”
Let’s assume that we perform at least two sword strikes parallel to the x-axis. The other case can be
handled by reflection along the line x = y.

For the case where three sword strikes are parallel to the x-axis, maintain the array count[y] that denotes
the sum of values for all monsters with y-coordinate y. You can see that the answer is the sum of the top
three elements.

For the case where two sword strikes are parallel to x-axis, we will fix the x-coordinate of one sword strike
which runs parallel to y-axis. Let this value p, and let Sp be the set of monsters with x-coordinate x.

If we decrease the count[y] value for the monsters in Sx, we can simply pick the top two elements in
the array. However, we need to recompute the top two elements every time, which results in O(N2) time
complexity if done naively.

Construct a list that maintains all possible indices of y, sorted by decreasing order of count[y]. Let’s say
we decreased the value count[y] for elements in Sx. You can observe that the top two elements are one
of the top |Sx| + 2 elements in the list. The list contains at least 2 elements that have their count[y]
unchanged, so the following elements must have their value not larger than those two elements.

In conclusion, for each x coordinate, you can compute the top two in O(|Sx|) time. This results in an
O(N) time algorithm except for the sorting of count[y] value, which can be also done in O(N) time with
counting sort.

Problem Tutorial: “RPS Bubble Sort”
Suppose that there are exactly two distinct characters in the string. In this case, Yihwan’s game actually
tries to sort a string where the losing character comes before the winning character.

Here, it is helpful to analyze from the perspective of the losing character. In each pass of the game, the
losing character will move left by one if there is a preceding winning character and not move otherwise.
In conclusion, if the k-th losing character was in the position i, it will be at position max(i− T, k) after
T iterations of the game. Using this observation, this special case can be solved in O(N) time.

Now let’s go back to the general case. Partition the string by repeatedly cutting the longest prefix of the
string that has at most two distinct characters. Here are the key observations for this problem.

Observation 1. In the first pass of the game, no character is swapped across partitions.

Proof. Let A be a winning character, and B be a losing character in the first partition. Since the partition
did not extend further, the first character of the second partition is C. After the first pass swapped all
characters until the first partition, the last character of the first partition is A. A can beat B, but it loses

Page 2 of 7

Stage 6: Division 1
17 липня 2022 р.

to C. Thus, the swap does not happen. By induction, you can show that this holds for all subsequent
partitions.

Observation 2. In any pass of the game, no character is swapped between different partitions.

Proof. The first pass leaves a losing pair at the border of different partitions, and this does not change
after further passes.

These observations reduce the problem to the two-character case. The time complexity is O(N).

Problem Tutorial: “Stones 1”
If a contiguous segment of stones contains only one color, you can gain points from at most one of the
stones. Partition the array into maximal contiguous monochromatic segments, and only leave the stones
with the largest weight for each segment. After this procedure, you can assume that adjacent stones have
different colors. In other words, the color of the stones alternates.

Let’s see how many times we can gain points from removing the stones. Assume N ≥ 3 since otherwise,
you can gain no points.

You can not gain any points from the leftmost and rightmost stones. If you remove the stones in the
middle, you can only possibly gain points from one of the adjacent stones. Repeatedly applying this
argument, observe that you gain the points from at most d(N − 2)/2e stones.
Mark any d(N − 2)/2e stones of your choice that are not the leftmost or rightmost stones. There is a
strategy that enables you to get points that are at least the sum of points of all marked stones.

We will show this by induction. If N ≤ 3, the claim is trivial. Otherwise, there exists a pair of adjacent
stones such that one of them is marked, and the other is unmarked. If you take the marked stone, then the
adjacent stones are merged into a single stone with a point maximum from both, and one of the adjacent
stones is not marked. If the other one was marked, mark the new stone. Otherwise, do not mark the new
stone.

By inductive argument, there is a strategy that enables you to get points that are at least the sum of
points of all marked stones. If the previously marked stone had a larger point than the other, this exactly
gives what we want, otherwise, this gives slightly more than what we want. �

In conclusion, there is a strategy that enables you to gain points that are at least the sum of the top
d(N − 2)/2e stones. Obviously, you can’t get more points than that. The maximum possible point can be
calculated by sorting all points. The time complexity is O(N logN).

Problem Tutorial: “Stones 2”
Each action of obtaining points from a stone can be described as a triplet of integers 1 ≤ i < j < k ≤ N ,
where you gain Aj points by removing a stone j which is adjacent to the stone i in the left, and stone k
in the right. The color of the stone (Si, Sj , Sk) should be either (’W’, ’B’, ’W’) or (’B’, ’W’, ’B’).
We will only consider the former case as the other can be solved symmetrically.

To obtain a situation where two stones i, k are adjacent to j when j is being removed, all elements
{i+ 1, . . . , j − 1, j + 1, . . . , k − 1} should be removed before the j’s removal, and i, k should be removed
afterwards. It can be shown, that the number of permutation which satisfies these conditions is:

2
(k − i− 2)!

(k − i+ 1)!
n!

Let this quantity be f(k − i), and let Wi be an indicator which is 1 if Si = ’W’ and 0 otherwise, We can
obtain an O(n3) algorithm which precomputes all values f(k − i) and computes the following value.

∑
1≤i<j<k≤N

Wi(1−Wj)Wk ×Aj × f(k − i)

Page 3 of 7

Stage 6: Division 1
17 липня 2022 р.

Take a prefix sum on Aj(1−Wj), and denote this value Sumi. We can rewrite the above formula as

∑
1≤i<k≤N

WiWk × (Sumk − Sumi)× f(k − i)

which is

∑
WiWk × Sumk × f(k − i)−

∑
WiWk × Sumi × f(k − i)

which can be computed with two convolutions. By using FFT, you can obtain an O(N logN) algorithm.

Problem Tutorial: “Beacon Towers”
Let the village i be important if hj < hi for all 1 ≤ j < i. You can make the following two observations.

Observation 1. If a segment contains no important villages, then the division does not satisfy the rules.

Proof. For a beacon installed in such segment, there exists a preceding beacon that is higher.

Observation 2. If all segments contain at least one important village, then the division satisfies the rules.

Proof. Every segment will install a beacon on one of the important villages. The subset of important
villages has increasing heights.

Let the indices of important villages be i1 < i2 < . . . < ik. Such sequence can be computed in O(N) time.

Consider the problem now as putting the barriers between two adjacent villages i, i+1 if we want to put
them in different segments. By the above observation, we can install at most one barrier between two
important villages. The answer is therefore

∏k−1
j=1(ij+1 − ij + 1).

Problem Tutorial: “Marbles”
The problem can be formulated as a linear program, but the matrix is too large to directly solve with
simplex. This fact hints toward a solution using flow techniques.

Consider the easier problem where there are no type-2 entries. The merging of sets can be described as a
rooted binary forest, where each leaf corresponds to a single marble, and each non-leaf corresponds to a
set that is a union of its two children. Type-3 entries pose a restriction on the number of red marbles in
a subtree.

Consider a flow network where each marble is connected from the source, and each root of the tree is
connected toward the sink. The marble is red if and only if there is a unit flow from the source to the
corresponding leaf. In this modeling, the type-3 entries can be considered as lower and upper bound on
capacities. This is a special case of circulation problem (LR-flow, flow with demands) and can be solved
with maximum flow.

Page 4 of 7

Stage 6: Division 1
17 липня 2022 р.

Figure 1. Illustration of above modeling for first 6 entries on sample input 1.

We need to support type-2 entries. From the vertex corresponding to a set which we will delete the marble,
direct out a new edge that routes the flow from removed marbles. Here, the challenge is to maintain the
same amount of flow between the two edges. For example, if the removed marble is red, there should be
an outgoing flow on this edge and vice versa.

A clean way to do this is to simply remove the source and sink, and direct the edge toward the leaf node
corresponding to the removed marbles. For the unremoved marbles, simply remove them at the end of
the diary. If there is an outgoing flow from the removed set, then this flow directly flows into the marbles.
This is exactly a circulation problem and can be solved by with maximum flow.

Figure 2. Illustration of above modeling for sample input 1.

Page 5 of 7

Stage 6: Division 1
17 липня 2022 р.

Problem Tutorial: “Exam”
Apply meet-in-the-middle along the minor diagonal of the grid (i+ j = N + 1). There are 2N−1 ways to
reach some cell in the diagonal from (1, 1), and 2N−1 ways to reach (N,N) from some cell in the diagonal.
Enumerate all such paths and store the following two values:

• The maximum subarray sum of the elements of the path (xi).

• The maximum non-empty suffix or prefix sum of the elements of the path (yi). For a path from
(1, 1), we are interested in the suffix, and for a path to (N,N), we are interested in the prefix.

Let Ux be the set of paths from (1, 1) to (x,N + 1 − x) and Dx be the set of paths from (x,N + 1 − x)
to (N,N). For each cell (x,N + 1 − x), we want to count the number of pairs i ∈ Ux, j ∈ Dx such that
max(xi + xj , yi, yj) = K. This is equal to the number of pairs where max(xi + xj , yi, yj) ≤ K minus the
number of pairs where max(xi + xj , yi, yj) ≤ K − 1.

Let’s count the number of pairs with max(xi + xj , yi, yj) ≤ K. If you ignore all paths with y > K, the
problem is reduced to the counting the number of pairs with xi+xj ≤ K. This can be solved with sorting
and two pointers. The total time complexity is O(2N ×N).

Problem Tutorial: “Board Game”
For simplicity let’s call the first player (Jeyeon) A and second player (Deokin) B.

If there is a grid with Ni,Mi ≥ 2, take any of them and remove its last row and column. It can be shown
that the winner does not change after this reduction.

Consider the case where A is in the winning position. In the original strategy, if the next move of A
reaches the last column of a chosen grid, you can see that B will want to perform the next move on a
chosen grid. Intuitively, the choice of B generally gives more opportunity for A to chose its next move. In
the chosen grid, A cannot do any action as the token already reached the last column. Thus, the action of
B does not benefit A. It is not worse to move the token from the chosen grid early to restrict A as much
as possible. From this, if the move of A reaches the removed column, then the next move of B will be in
the same grid. This applies to all possible state branching. By eliminating this pair of adjacent moves,
you can apply the original strategy in the new grid.

As a result, the grid can be reduced to satisfy Ni = 1 or Mi = 1. Beware that the resulting grids may
not have the size (1,Mi −Ni + 1) or (Ni −Mi + 1, 1). The above argument only holds when the corner
(Ni,Mi) is inside the fence. If a removal does not make (Ni−1,Mi−1) inside the fence, you should adjust
either Ni or Mi so that the bottom-rightmost cell is reachable.

From the fence string, you can implement a query function that tells you in O(1) time if you are above
the upper fence, below the lower fence, or inside the reachable cell. By using this query function, you can
simulate the removal procedure in O(N +M) time, solving the problem in linear time.

To formally prove the main argument, you can try something similar to the surreal number. For a grid,
when we are removing a last row and column, assign an integer 0 for the bottom-rightmost cell, and −k
if a cell is k unit above from the cell, and k if a cell is k unit left from the cell. Let X be the sum of all
numbers written in each token’s location. Then, it can be shown by induction that:

• If X > 0, A wins.

• If X = 0, the player who is not in a turn wins.

• If X < 0, B wins.

and you can observe that this is equivalent to the above algorithm.

Page 6 of 7

Stage 6: Division 1
17 липня 2022 р.

Problem Tutorial: “Make Different”
Naively, you can solve the problem with a breadth-first search. Each state can be represented as a pair
(x, y) denoting the position of two robots. Note that (y − x) (mod N) does not change, and there are at
most N different reachable states. By this observation, if the answer exists, it is at most N − 1.

By symmetry, assume that the first command always moves the robot clockwise (CW).

First, you can observe that the optimal solution changes the direction at most once. This holds because:

• To change the direction twice, you have to jump over the original position after first direction change.

• To do it, you have to change your direction with the first type 1 button you encountered.

• If you have a solution that goes in CW-CCW-CW direction, you can find a better solution that goes
only in CCW direction.

This observation also gives a naive solution that tries all the detour points.

Second, observe that you never have to detour on the type 2 button. If your previous button was 2, this
is obviously a waste. If it was 1, you can just detour on that button.

The first type 1 button you encountered by a CW walk is a special case since it can go over the original
position. Suppose you detoured in the k-th type 1 button you encountered by a CW walk. In this case,
you only have to care about going to the left using button 2. If you meet button 1, you either visited the
k−1-th type 1 button (which indicates no solution of such type) or you visited a different button for each
robot.

Let LeftOne[x] be the smallest k such that A[(i − 1 − 2k) (mod N)] = 1. The button is interesting if
A[x] = A[y] = 1, and LeftOne[x] 6= LeftOne[y].

Let D be the length of CCW walk you made in the k-th interesting button. Observe that in the k + 1-th
interesting button, you only have to make the detour of length D/2, and in the k+2-th interesting button,
you only have to make the detour of length D/4, and so on. This shows that there are at most logN
interesting buttons that you can detour on.

Now all we need is a data structure to optimize the above solution. To find the next interesting button,
you can do a binary search on a sparse table with hashes. You can also find the length of the first detour
similarly. Actually, the first detour can be solved a bit more easily, which is left as an exercise. The time
complexity of this solution is O(N logN +Q log2N).

Problem Tutorial: “Short Question”
As a prerequisite, let’s compute the value

∑N
i=1

∑N
j=1 |pi − pj |. By sorting a sequence p, you can get rid

of the absolute value and simply compute 2
∑N

i=1

∑i−1
j=1 (pi − pj). Each i is added for i − 1 times and

subtracted for (N − i) times, so the answer is 2
∑N

i=1 (2i−N − 1)pi. Let’s denote this value as a function
of sequence p as value(p).

Note that min(a, b) = a + b − max(a, b), and max(|pi − pj |, |qi − qj |) can be interpreted as a Cheby-
shev distance between two point (pi, qi) and (pj , qj). It is known that the Chebyshev distance is
equivalent to the Manhattan distance if the point set are rotated by 45 degrees. In other words,
max(|pi − pj |, |qi − qj |) = 1

2(|pi + qi − pj − qj | + |pi − qi − pj + qj |). If we create a auxiliary sequence
ai = pi + qi, bi = pi − qi, this value simply becomes 1

2(value(a) + value(b)).

In conclusion, the answer is value(p) + value(q) − 1
2(value(a) + value(b)). The time complexity of this

solution is O(N logN).

Page 7 of 7

