
League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem A. Mad Matrix Multiplication
Input file: standard input
Output file: standard output
Time limit: 1.5 seconds
Memory limit: 256 megabytes

In mathematics, matrix multiplication is a binary operation that produces a matrix from two matrices.
Matrix multiplication is a basic tool of linear algebra, and as such has numerous applications in many
areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering.
That is said by Wikipedia and that is true. Also in computer science matrix multiplication is widely used
in machine learning, computer graphics, cryptography and other areas. In neural networks, calculating
matrix multiplication usually takes at least 90 percent of the total computation time, so the performance
of a lot of the fancy machine learning-based things of our time depends on the efficiency of the matrix
multiplication implementation.

That was some useful information for you, but absolutely useless in the legend of this task, because the
task is very simple. You are given two matrices, multiply them.

Input
First line contains three integer numbers N,M,K. (1 ≤ N,M,K ≤ 1000). The values of the matrices A
and B are given in the next lines.

Matrix A is of the size N ×M and is described in N lines with M integer numbers in each.

Matrix B is of the size M ×K and is described in M lines with K integer numbers in each.

Matrix descriptions are separated with empty lines.

The values of matrix elements are limited by following inequations: 0 ≤ Aij < 109+7 and 0 ≤ Bij < 109+7

Output
Print matrix C = AB of the size N ×K in the N lines with K integer numbers in each. Print elements
of the matrix C modulo 109 + 7.

By the definition of matrix multiplication j-th printed number in the i-th row should be equal(
m−1∑
t=0

Ait ·Btj

)
mod 109 + 7

Example
standard input standard output

3 2 1

1 2
3 1
0 1

1
1

3
4
1

Page 1 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem B. Don’t Try To Hash It
Input file: standard input
Output file: standard output
Time limit: 1.5 seconds
Memory limit: 256 megabytes

Someone has sent you a string of N small Latin characters. This unknown man also asked you to perform
some operations on this string. You, being a brave, clever and inquisitive person, agreed to do everything
that you are asked to do. Of course, you will write a program that fulfills all the queries you are given
without a shadow of a doubt!

The given queries are of two different kinds.

First type of queries asks to replace all the characters of some substring by the given character.

Second type of queries asks to compare two given substrings of the same length lexicographically and
output −1 if the first substring is smaller, 1 if the second substring is smaller and 0 if substrings are
equal.

Input
The first line contains single integer N - length of the given string s. 1 ≤ N ≤ 105.

The second line contains one string of the length N : s1s2s3...sN .

The third line contains single integer Q - number of queries.

Each of the next Q lines contains description of each query in the following formats:

1 l r c - query of the first type, it asks you to replace all the characters from l-th to r-th with the given
lowercase Latin letter c. (1 ≤ l ≤ r ≤ N)

2 k a b - query of the second type. It asks you to compare substrings sa..a+k−1 and sb..b+k−1.
(1 ≤ k ≤ N, 1 ≤ a, b ≤ N − k + 1)

Example
standard input standard output

7
dababac
5
2 3 2 4
2 5 1 2
1 1 6 a
2 5 1 2
2 5 2 3

0
1
0
-1

Page 2 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem C. Integer Points Easy
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

There is a circle of radius R centered at the origin of coordinate plane.

Count the number of integer points inside or on the border of the circle.

That is the number of points with integer coordinates, which are located at a distance of no more than
R from the center of the circle.

Input
Single integer R - radius of the circle. 1 ≤ R ≤ 106

Output
Single integer - number of integer points in the circle.

Examples
standard input standard output

1 5

3 29

Page 3 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem D. Integer Points
Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes

There is a circle of radius R centered at the origin of coordinate plane.

Count the number of integer points inside or on the border of the circle.

That is the number of points with integer coordinates, which are located at a distance of no more than
R from the center of the circle.

Input
Single integer R - radius of the circle. 1 ≤ R ≤ 109

Output
Single integer - number of integer points in the circle.

Examples
standard input standard output

1 5

3 29

Page 4 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem E. Reachability
Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 64 megabytes

You are given an oriented graph of N vertices.

For each vertex v in the given graph you should compute Rv - number of vertices u reachable from vertex
v.

Vertex u is considered to be reachable from vertex v if there exists a path of oriented edges which starts
with v and ends with u.

Input
The first line contains two integers: number of vertices N and number of edges M .
1 ≤ N ≤ 5 · 104, 1 ≤M ≤ 2 · 105

Each of the next M lines contains description of one edge: two integers u and v, which means that there
is an oriented edge from u to v. 1 ≤ u, v ≤ N , u 6= v.

Output
Print N lines with a single integer on each. Integer on the i-th line should be equal to Ri - number of
reachable vertices from vertex i.

Example
standard input standard output

5 6
1 2
2 4
3 4
4 5
2 5
5 4

4
3
3
2
2

Page 5 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem F. Fibonacci Multiverse
Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: 512 megabytes

Once Eugene decided that it would be nice to calculate all the Fibonacci numbers. He took the numbers 0
and 1 as the initial values and calculates one more Fibonacci number every second. Obviously, he will do
this until he gets bored. You must agree that this is a very interesting activity and he will not get tired of
it soon. Thus, in the first second of this activity he got the number 1, in the second - the number 2, then
3, 5, 8, 13, 21 and so on. But you know, because of all these time travels, jumps between universes, magic
and other cool stuff, which we observe in different films and tv-series, the matter of space-time collapses
and our global multiverse becomes very unstable. So collisions between universes sometimes happen, due
to which the time continuum is disrupted and the timeline of our universe is exposed to factors from other
universes. Surprisingly, when such things happen, Eugene’s activity is also affected.

In more detail, when a collision occurs, it changes a certain period of time of the past, present and future,
as a result of which the global knowledge of humanity in our universe changes and Eugene begins to use
a different formula for calculating of new Fibonacci numbers. Namely, each collision of universes touches
a certain period of time from L to R seconds from the beginning of Eugene’s activity and forces him to
use some another formula of kind Fn = a ·Fn−1 + b ·Fn−2 for some integers a and b instead of familiar to
us Fn = Fn−1 + Fn−2.

You built a brilliant machine which allows you to observe all the universes collisions. And since you also
love Fibonacci numbers a lot, you monitor the Eugene’s activity and sometimes you want to know which
Fibonacci number Eugene computes at the T -th second from the start of his activity with current state
of the universe. So it’s a good idea to write a program which will help you satisfy your curiosity.

Input
First line of the input contains a single integer N - number of lines in the log of your brilliant machine
about the universes collisions and your curiosity since the beginning of time. Each next of N lines is one
of the two kinds:

@ L R a b - line of the first type describes new collision which affects period of time form L-th to R-th
second of Eugene’s activity and forces him to use coefficients a and b for Fibonacci formula during that
time. 1 ≤ L ≤ R ≤ 109 and 1 ≤ a, b ≤ 109

? T - line of the second type describes the query of your curiosity about the moment T of the current
state of the universe. 1 ≤ T ≤ 109

Output
For each line of the second type in the input you should print single number on the separate line - the
value of Fibonacci number computed by Eugene at the corresponding moment T . Since this number may
be very big, print its value modulo 109 + 7. Print answers on queries in the same order as they appear in
the input.

Page 6 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Example
standard input standard output

9
? 1
? 3
? 5
? 9
@ 1 3 2 1
? 5
@ 3 8 3 5
? 5
? 9

1
3
8
55
29
425
38675

Note
Explanation of the Example.

Initial values which Eugene uses for Fibonacci numbers are 0 and 1.

Until first collision happens, Eugene uses simple formula Fn = Fn−1 + Fn−2 during all the time, so the
computed by him numbers from the 1st second of his activity are 1, 2, 3, 5, 8, 13, 21, 34, 55, 89... and answers
on the first 4 queries are the numbers: 1, 3, 8, 55.

After first collision, described by the line @ 1 3 2 1, Eugene uses formula Fn = 2 · Fn−1 + Fn−2 at the
seconds 1, 2 and 3, so computed by him numbers are 2, 5, 12, 17, 29, 46... and answer on the next query is
equal to 29.

Page 7 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem G. A Lot Of Numbers Easy
Input file: standard input
Output file: standard output
Time limit: 1.5 seconds
Memory limit: 18 megabytes

You are given an array of integers. The size of the array can be very large, but fortunately, most of the
numbers in the array are boring for you, since they occur exactly 2 times. Unique numbers are much more
interesting. You would like to explore and analyze the unique numbers of a given array, you may even
make some puzzles with them, but first you need to find them. So let’s do that!

Input
The first line contains a single integer N - size of the given array. 1 ≤ N ≤ 5 · 106.
The second line has N integer numbers A1, A2, ..., AN - elements of the array. 0 ≤ Ai ≤ 109.

It is guaranteed that there are only K unique numbers in that array, and each other number, except that
K, occurs exactly two times in that array. 1 ≤ K ≤ 9.

There are two kinds of tests in this version of the task:

1) 1 ≤ N ≤ 106 and 1 ≤ K ≤ 9

2) 1 ≤ N ≤ 5 · 106 and K = 1

Output
On the first line print single integer K - number of unique numbers in the given array.

On the second line print unique numbers of the given array sorted in ascending order.

Examples
standard input standard output

5
4 7 7 3 4

1
3

4
0 74 47 0

2
47 74

11
7 13 5 41 13 41 25 7 2 2 125

3
5 25 125

Note
Pay attention to the unusual memory limit in this task!

Page 8 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem H. A Lot Of Numbers
Input file: standard input
Output file: standard output
Time limit: 1.5 seconds
Memory limit: 18 megabytes

You are given an array of integers. The size of the array can be very large, but fortunately, most of the
numbers in the array are boring for you, since they occur exactly 2 times. Unique numbers are much more
interesting. You would like to explore and analyze the unique numbers of a given array, you may even
make some puzzles with them, but first you need to find them. So let’s do it!

Input
The first line contains a single integer N - size of the given array. 1 ≤ N ≤ 5 · 106.
The second line has N integer numbers A1, A2, ..., AN - elements of the array. 0 ≤ Ai ≤ 109.

It is guaranteed that there are only K unique numbers in that array, and each other number, except that
K, occurs exactly two times in that array. 1 ≤ K ≤ 9.

Output
On the first line print single integer K - number of unique numbers in the given array.

On the second line print unique numbers of the given array sorted in ascending order.

Examples
standard input standard output

5
4 7 7 3 4

1
3

2
47 74

2
47 74

11
7 13 5 41 13 41 25 7 2 2 125

3
5 25 125

9
0 1 2 3 4 5 6 7 8

9
0 1 2 3 4 5 6 7 8

Note
Pay attention to the unusual memory limit in this task!

Page 9 of 10



League 1. Day 4. Efficient implementation and code optimization (Yevhen Zadorozhnii)
Uzhhorod, Ukraine, August, 5, 2020

Problem I. Three Queries On The Tree
Input file: standard input
Output file: standard output
Time limit: 3 seconds
Memory limit: 256 megabytes

You have a rooted tree with the root in the vertex 1, where some numbers are written on the vertices.

You should perform queries of the 3 types:

1) Add some value to all the numbers on the given simple path in the tree.

2) Count the numbers which are less or equal to the given value on the given simple path.

3) Count the numbers which are less or equal to the given value in the given vertex subtree.

Input
The first line contains an integer N - number of vertices in the tree. 1 ≤ N ≤ 105.

Each of the next N − 1 lines contains two numbers u and v - some edge of the tree. It’s guaranteed that
given values describe correct tree.

The next line contains N numbers A1, A2, ..., AN , where Ai - is the initial number written on the vertex
i. −108 ≤ Ai ≤ 108

The next line contains single integer M - number of queries. 1 ≤M ≤ 105.

Each of the next M lines describes one query of the one of 3 types:

1 v u x - add value x to all the numbers on the simple path between vertices v and u. 1 ≤ v, u ≤ N ,
−103 ≤ x ≤ 103.

2 v u x - count the numbers which are ≤ x on the simple path between vertices v and u. 1 ≤ v, u ≤ N ,
−109 ≤ x ≤ 109.

3 v x - count the numbers which are ≤ x in the subtree of vertex v. 1 ≤ v ≤ N , −109 ≤ x ≤ 109.

Output
For each query of the 2nd and 3rd type, in the same order as they are given in the input, print one number
on the separate line - answer on the query.

Example
standard input standard output

5
1 2
2 3
3 4
2 5
2 -3 5 9 5
6
1 1 2 3
2 1 3 1
1 1 4 -4
2 4 5 0
1 5 3 2
3 2 4

1
1
2

Page 10 of 10


