
Matroid theory, matroids

intersection
prepared by Matvey Aslandukov and Ihor Barenblat

1

Greedy algorithms

There are kind of problems where you are given a set of objects and you have to

select some subset from it that meets certain properties.

For example, in a Hamiltonian path problem you are given a set of edges and you

have to select some subset of edges that forms a simple path going through all

the vertices.

Another example could be Minimal Spanning Tree problem. Again, you are given

a set of weighted edges and have to select some subset of edges with minimal

total weight that forms a spanning tree.

Matroid theory helps to generalize such kind of problems.

2

Matroids

Let’s denote the given set of objects as 𝑋. We will call this set of objects as ground

set (носитель матроида).

Among all 2 𝑋 subsets of 𝑋 there are some “good” subsets. Let’s call these

subsets “independent” and denote the set of all independent subsets as 𝐼: 𝐼 ⊂ 2𝑋.

We are going to call all other subsets (2𝑋 \ 𝐼) are “bad”, “not independent”, or

“dependent”.

Then a pair 𝑀 = 〈𝑋, 𝐼〉 forms a valid matroid iff the set 𝐼 meets all 3 following

axioms.

3

Matroid axioms

1. Empty set is independent (∅ ∈ 𝐼).

2. Any subset of independent set is independent (if 𝐵 ∈ 𝐼 and 𝐴 ⊂ 𝐵, then 𝐴 ∈ 𝐼).

3. If independent set 𝐴 has smaller size than independent set 𝐵, there exists at

least one element in 𝐵 that can be added into 𝐴 without loss of independency

(if 𝐴, 𝐵 ∈ 𝐼 and 𝐴 < 𝐵 , then ∃𝑥 ∈ 𝐵\𝐴 such that 𝐴 ∪ 𝑥 ∈ 𝐼).

4

Example of a matroid

Consider the following example, where 𝑋 = 𝑥, 𝑦, 𝑧

and 𝐼 = {}, 𝑥 , 𝑦 , 𝑧 , 𝑥, 𝑦 , 𝑥, 𝑧 .

1. Empty set is independent.

2. For example for 𝐵 = 𝑥, 𝑧 all its subsets 𝑥 , 𝑧

and {} are also independent.

3. For example for 𝐴 = {𝑧} and 𝐵 = {𝑥, 𝑦} we can

add 𝑥 to the set 𝐴 so that it remains

independent.

5

Bases of a matroid

1. Any independent set of maximum size is called a basis of given matroid. In

other words there is no element that can be added to a basis without loss of

independency.

2. All bases have equal size (otherwise we can add something to smaller basis

from greater basis by third axiomatic property). Directly from previous, no basis is

a subset of other basis.

3. Any independent set is a subset of some basis (by third property we can

continue increasing its size until reaching some basis), so it is enough to only

know about all bases of matroid to completely describe it.

6

Circuits of a matroid

1. Dependent set is a circuit if all subsets (excluding whole set) of this set are

independent. In other words, circuit is dependent set, that does not allow

removing any of its elements without gaining independence.

2. No circuit is a subset of another circuit (otherwise we can remove some

elements from greater circuit without removing dependence). Each dependent

set contains at least one circuit as a subset.

3. Same as bases, it is enough to only know about all circuits of a matroid to

completely describe it.

7

Most common matroids. Universal matroid

1. Matroid that considers subset 𝐴 independent if size of 𝐴 is not greater than

some constant 𝑘 (𝐴 ∈ 𝐼 iff |𝐴| ≤ 𝑘). Simplest one, this matroid does not really

distinguish elements of ground set in any form, it only cares about number of

taken elements.

2. All subsets of size 𝑘 are bases for this matroid.

3. All subsets of size (𝑘 + 1) are circuits for this matroid.

8

Most common matroids. Colorful matroid

1. Ground set 𝑋 consists of colored elements. Each element has exactly one

color. Set of elements is independent if no pair of included elements share a

color.

2. Size of basis is amount of different colors included into a set 𝑋. Bases of this

matroid are sets that have exactly one element of each color.

3. Circuits of this matroid are all possible pairs of elements of the same color.

Colors can be enumerated with integers for practical purposes.

9

Most common matroids. Graphic matroid

1. Ground set 𝑋 consists of edges of some undirected graph. Set of edges is

independent if it does not contain a cycle. This type of matroids is the greatest

one to show some visual examples, because it can include dependent subsets

of a large size and can be represented on a picture at the same time.

2. If graph is connected then any basis of this graph is just a spanning tree of this

graph. Otherwise basis is a forest of spanning trees that include one spanning

tree for each connected component.

3. Circuits are simple loops of this graph.

10

Most common matroids. Linear algebra matroid

1. Ground set 𝑋 consists of edges of vectors of some vector space. Set of vectors

is considered independent if it is linearly independent (no vector can be

expressed as linear combination of other vectors from that set). This is the

matroid from which whole matroid theory originates from.

2. Linear bases of vector set are bases of matroid.

3. Any circuit of this matroid is set of vectors, where each vector can be

expressed as combination of all other vectors, but this combination involves all

other vectors in circuit.

11

Finding a basis in matroid. Square solution

Consider the following problem: we have to find a basis in matroid 𝑀 = 〈𝑋, 𝐼〉.

According to third matroid property, if we have some independent set 𝑆 which size

is less than size of a basis, we can find some element 𝑥 that can be added to 𝑆

without loss of independence. So, we can start with empty set that is guaranteed

to be independent and add elements one-by-one performing a linear scan over

ground set to find next element to add.

This algorithm takes 𝑂 𝑛2 time, where 𝑛 = |𝑋|, because in each step it’s looking

for some of the 𝑛 elements that is possible to add.

12

Finding a basis in matroid. Square solution

vector<GroundSetElement> get_basis(vector<GroundSetElement> X) {

 vector<GroundSetElement> S;

 for (int found = 1; found;) {

 found = 0;

 for (const auto &x : X) {

 if (can_add(S, x)) {

 S.push_back(x);

 found = 1;

 break;

 }

 }

 }

 return S;

}

13

Finding a basis in matroid. Linear solution

However it’s possible to speed up described algorithm.

In order to do that we should notice, that if on some step of our algorithm element

𝑥 wasn’t added into set 𝑆 it will never be possible to add it on any future step. It’s

because if 𝑆 ∪ {𝑥} was considered dependent on some step, it includes some

circuit 𝐶, that means that all future versions of 𝑆 combined with element 𝑥 will

contain the circuit 𝐶 and be dependent.

So we can find a basis in one single scan, if we will take elements greedily

(include element into 𝑆 if 𝑆 ∪ 𝑥 ∈ 𝐼). Time complexity – 𝑂 𝑛 .

14

Finding a basis in matroid. Linear solution

vector<GroundSetElement> get_basis(vector<GroundSetElement> X) {

 vector<GroundSetElement> S;

 for (const auto &x : X) {

 if (can_add(S, x)) {

 S.push_back(x);

 }

 }

 return S;

}

15

Rado-Edmonds algorithm

Consider the weighted version of previous problem. Each element 𝑥 ∈ 𝑋 has some

weight and we have to find a basis with minimum total weight.

Let’s assume that we have already found an independent set 𝐴 of size 𝑘 with

minimum total weight and now we want to find minimum total weight of

independent set with size 𝑘 + 1.

Let’s denote independent set with size 𝑘 + 1 with minimum total weight as 𝐵.

16

Rado-Edmonds algorithm

Since 𝐴 < 𝐵 , by the third axiom there is some element 𝑦 ∈ 𝐵\𝐴 such that

𝐴 ∪ 𝑦 ∈ 𝐼.

Since 𝐴 is an independent set of size 𝑘 with minimum total weight and 𝐵\{𝑦} is

some independent set of size 𝑘, the following inequality meets: 𝑤 𝐴 ≤ 𝑤(𝐵\{𝑦}).

Since 𝐵 is an independent set of size (𝑘 + 1) with minimum total weight and

A ∪ {𝑦} is some independent set of size (𝑘 + 1), the following inequality meets:

𝑤 𝐴 ∪ {𝑦} ≥ 𝑤(𝐵).

Let’s add 𝑤(𝑦) to both sides of the first inequality.

17

Rado-Edmonds algorithm

𝑤 𝐴 + 𝑤 𝑦 ≤ 𝑤(𝐵\{𝑦}) + 𝑤(𝑦)

𝑤 𝐴 ∪ {𝑦} ≤ 𝑤(𝐵)

Combining this result with second inequality we obtain that 𝑤 𝐴 ∪ {𝑦} ≤ 𝑤 𝐵 ≤

𝑤 𝐴 ∪ {𝑦} , which means that 𝑤 𝐴 ∪ 𝑦 = 𝑤(𝐵).

It means that there always exists some element 𝑦 that can be added into 𝐴 to

obtain an independent set with size 𝑘 + 1 with minimum total weight.

So in order to get an independent set with size 𝑘 + 1 with minimum total weight,

we should find an element 𝑦 with minimum weight such that 𝐴 ∪ 𝑦 ∈ 𝐼 and add 𝑦

into the 𝐴.

18

Rado-Edmonds algorithm

Combining obtained result with the algorithm for the unweighted version of the

problem, we can get the following algorithm:

1. Sort all elements from 𝑋 by their weight.

2. Consider all elements 𝑥 ∈ 𝑋 in sorted order and include it into 𝑆 if 𝑆 ∪ 𝑥 ∈ 𝐼.

Time complexity – 𝑂 𝑛 log 𝑛 .

You can notice, that for graphic matroid this algorithm transforms into the

Kruskal’s algorithm.

19

Rado-Edmonds algorithm

vector<GroundSetElement> get_basis(vector<GroundSetElement> X) {

 sort(X.begin(), X.end(), cmp_by_weight);

 vector<GroundSetElement> S;

 for (const auto &x : X) {

 if (can_add(S, x)) {

 S.push_back(x);

 }

 }

 return S;

}

20

Lemma about circuits

Lemma 1. For any two different cycles 𝐶1 and 𝐶2 and for any element 𝑥 ∈ 𝐶1 ∪ 𝐶2,

𝐶1 ∪ 𝐶2 \ {𝑥} is dependent. If 𝑥 ∉ 𝐶1 or 𝑥 ∉ 𝐶2 the proof is obvious. Consider a case

when 𝑥 ∈ 𝐶1 ∩ 𝐶2. Let’s 𝐷 = 𝐶1 ∪ 𝐶2 \ {𝑥} and 𝐴 = 𝐶1 ∩ 𝐶2.

Let’s assume that 𝐷 is independent. Since circuits 𝐶1 and 𝐶2 are different,

𝐷 = 𝐶1 \ 𝐶2 + 𝐶2 \ C1 + 𝐴 − 1 ≥ 1 + 1 + 𝐴 − 1 = 𝐴 + 1 > |𝐴|.

Since 𝐴 < |𝐶1|, |𝐶1| is a circuit and 𝐴 ⊂ 𝐶1, 𝐴 is independent. By applying third

axiom multiple times we can get independent set 𝐵 such that 𝐴 ⊂ 𝐵 and 𝐵 = |𝐷|.

21

Lemma about circuits

Since 𝐶1 is a circuit, there’s some element in 𝐶1 \ 𝐴 but not in 𝐵. Symmetrically

there’s some element in 𝐶2 \ 𝐴 but not in 𝐵. It means that 𝐵 contains no more than

𝐶1 \ 𝐴 − 1 elements from 𝐶1, no more than 𝐶2 \ 𝐴 − 1 elements from 𝐶2, exactly

|𝐴| elements from 𝐴 and no other elements.

We get 𝐵 ≤ 𝐴 + 𝐶1 \ 𝐴 − 1 + 𝐶2 \ 𝐴 − 1 = 𝐶1 ∪ 𝐶2 − 1 = 𝐷 − 1 < |𝐷|. But

we assumed that 𝐵 = |𝐷|, so we got the contradiction.

So we have proved that for any two different cycles 𝐶1 and 𝐶2 and for any element

𝑥 ∈ 𝐶1 ∪ 𝐶2, set 𝐶1 ∪ 𝐶2 \ {𝑥} is dependent.

22

Maintaining basis of minimum weight

Consider modification of the previous problem. We don’t know all elements 𝑋 in

advance, but they are being added one by one instead. After addition of each

element we want to find a basis with minimum total weight.

Suppose that we have the optimal basis 𝑆 and want to process new element 𝑥

with weight 𝑤. There’re two cases:

1. 𝑆 ∪ {𝑥} ∈ 𝐼. In that case we can just add 𝑥 into 𝑆, because it’s the only way to

obtain a basis (all independent subsets which don’t contain 𝑥 have size at most

𝑆 , which is smaller than |𝑆 ∪ {𝑥}|).

23

Maintaining basis of minimum weight

2. 𝑆 ∪ {𝑥} ∉ 𝐼. Let’s prove that in such a case set 𝑆 ∪ 𝑥 contains exactly one circuit

𝐶 (𝑥 ∈ 𝐶). Of course it can’t contain zero circuits because 𝑆 ∪ {𝑥} is dependent.

Let’s suppose that 𝑆 ∪ {𝑥} contains more than one circuit. Let’s denote some

second circuit as 𝐶2 (𝐶2 ≠ 𝐶). According to lemma 1, 𝐷 = 𝐶 ∪ 𝐶2 \ {𝑥} is

dependent. But 𝐷 is a subset of independent set 𝑆 and by second axiom should

be also independent. Contradiction, which means that 𝑆 ∪ {𝑥} contains exactly one

circuit.

By definition removing any element from circuit leads to independent set, which

means that 𝑆 ∪ {𝑥} \ {𝑦} ∈ 𝐼 for 𝑦 ∈ 𝐶. In order to receive the minimum weight of

independent set 𝑆, we have to remove element from 𝐶 with maximum weight.
24

Maintaining basis of minimum weight

For example, in order to recalculate

minimum spanning tree after adding

edge 2 → 6 with weight 29, we have to

detect cycle 1 → 2 → 6 → 3 → 1 and

remove edge 3 → 6 with the maximum

weight 41.

25

Matroids intersection

Unfortunately not much problems, where we have to select some “good” subset of

objects, can be represented as a matroid formulation. However, much wider range

of tasks can be represented in terms of intersection of several matroids.

Matroids intersection of several matroids 𝑀1 = 〈𝑋, 𝐼1〉, 𝑀2 = 〈𝑋, 𝐼2〉, …, 𝑀𝑘 = 〈𝑋, 𝐼𝑘〉,

defined on the same ground set 𝑋, represents “good” subsets as an intersection

𝐼1 ∩ 𝐼2 ∩ ⋯ ∩ 𝐼𝑘. The task is to find a set of objects 𝑆 ⊂ 𝑋 with maximum size such

that 𝑆 ∈ (𝐼1 ∩ 𝐼2 ∩ ⋯ ∩ 𝐼𝑘). The weighted version of this task is to find a

corresponding set 𝑆 with maximum size but also with minimum total weight of

objects.

26

Matroids intersection

Being able to solve matroids intersection problem allows to solve a wide range of

tasks. For example, in order to solve a Hamiltonian path problem, we can intersect

three following matroids on ground set of edges of a directed graph:

1. Ensure each vertex has at most 1 outcoming power (can be represented as

colorful matroid, paint edges that come out of the same vertex into one color)

2. Ensure each vertex has at most 1 incoming power

3. Ensure there is no loops (forget about edges direction and check that edges

form a forest of spanning trees)

27

Matroids intersection

Unfortunately, intersection of three and more matroids in NP-complete task.

However, intersection of two matroids can be done in polynomial time.

It allows us, for example, to solve problem about finding a colorful spanning tree,

where we have to select a set of edges which forms spanning tree and at the

same time all colored in the different color.

28

Matroids intersection is not a matroid

The first idea to solve matroids intersection problem is to suppose that intersection

of two matroids 𝑀1 = 〈𝑋, 𝐼1〉 and 𝑀2 = 〈𝑋, 𝐼2〉 is also a matroid 𝑀 = 〈𝑋, 𝐼1 ∩ 𝐼2〉.

Indeed, first two axioms are obviously true: empty set is independent in both 𝐼1

and 𝐼2, and any subset of independent set is also independent in both matroids.

However, the third axiom doesn’t hold.

Consider mentioned earlier problem about colorful spanning tree, where first

matroid 𝑀1 = 〈𝑋, 𝐼1〉 is graphic, and the second matroid 𝑀2 = 〈𝑋, 𝐼2〉 is coloful.

29

Matroids intersection is not a matroid

Consider two independent sets in both matroids:

𝐴 = {𝑎, 𝑐} , 𝐵 = {𝑎, 𝑏, 𝑑} . 𝐴 < |𝐵| , however we cann’t

add any element from 𝐵 into 𝐴. Adding edge 𝑑 will lose

independence in graphic matroid 𝑀1 = 〈𝑋, 𝐼1〉 , while

adding edge 𝑏 will lose independence in colorful matroid

𝑀2 = 〈𝑋, 𝐼2〉.

This example shows that third axiom doesn’t hold, which

means that greedy algorithm, which add objects one by

one, will not work correctly.

30

Matroids intersection

However it’s still possible two

increase size of 𝐴 by one. In order

to do this, let’s built the following

directed bipartite graph. Left part

of this graph will contain all

objects from 𝐴, while the right part

will contain all other objects from

𝑋 \ 𝐴.

31

Matroids intersection

Denote the set 𝑆 as set of all

objects from the right part of the

graph such that adding it into 𝐴

keeps independency in 𝐼1 . Let’s

paint these objects in green color.

Denote the set 𝑇 as set of all

objects from the right part of the

graph such that adding them into

𝐴 keeps independency in 𝐼2. Let’s

paint these objects in yellow color.

32

Matroids intersection

Let’s add an edge from the left

vertex 𝑢 to the right vertex 𝑣

when 𝐴 \ 𝑢 ∪ 𝑣 ∈ 𝐼1.

Symmetrically let’s add an edge

from the right vertex 𝑣 to the left

vertex 𝑢 when 𝐴 \ 𝑢 ∪ 𝑣 ∈ 𝐼2.

33

Matroids intersection

Let’s find the shortest path from

vertex some green vertex 𝑠 ∈ 𝑆

to some yellow vertex 𝑡 ∈ 𝑇. It’s

easy to see that any such path

contains some set 𝐿 of vertices

from the left part and set 𝑅 of

vertices from the right part,

where 𝑅 = 𝐿 + 1.

It can be proven that 𝑋 \ 𝐿 ∪ 𝑅 ∈

𝐼1 ∩ 𝐼2, so we can increase size

of chosen set by one.
34

Matroids intersection

In our example the shortest path

is equal to 𝑏 → 𝑐 → 𝑑 , which

means that we are going to

change set 𝐴 = {𝑎, 𝑐} to the set

𝐴 = 𝑎, 𝑐 \ 𝑐 ∪ 𝑏, 𝑑 = {𝑎, 𝑏, 𝑑}.

35

Matroids intersection

Why is it correct? Since 𝑏 ∈ 𝑆 ,

object 𝑏 can be added into 𝐴 and

keeps independency in 𝐼1 . Also

there’s an edge 𝑏 → 𝑐 , which

means that after removing 𝑐 ,

adding 𝑏 keeps independency in

𝐼2 as well.

The same holds for an element 𝑑.

36

Matroids intersection

If a path from 𝑆 to 𝑇 doesn’t exist,

then size of set 𝐴 is maximum

possible.

There’re 𝑟 iterations of our

algorithm, each takes 𝑂(𝑟 ⋅ |𝑋|)

time for building a bipartite graph

and 𝑂(𝑟 ⋅ 𝑋) for finding the

shortest path.

The total complexity – 𝑂(𝑟2|𝑋|).

37

struct GroundSetElement {

 int from, to, color;

 bool taken;

 GroundSetElement(int from, int to, int color): from(from), to(to),

 color(color), taken(false) {

 }

};

int matroid_intersection(vector<GroundSetElement> &X) {

 int result = 0;

 while (augment(X)) {

 ++result;

 }

 return result;

}

38

bool augment(vector<GroundSetElement> &x) {

 init(x);

 vector<bool> is_s(x.size()), is_t(x.size());

 for (int i = 0; i < x.size(); ++i) {

 if (!x[i].taken) {

 is_s[i] = can_add1(x[i]);

 is_t[i] = can_add2(x[i]);

 }

 }

 vector<vector<int>> graph = build_graph(x);

 return bfs(is_s, is_t, graph, x);

}

39

vector<vector<int>> build_graph(vector<GroundSetElement> &x) {

 vector<vector<int>> graph(x.size());

 for (int i = 0; i < x.size(); ++i) {

 if (x[i].taken) {

 x[i].taken = false;

 init(x);

 x[i].taken = true;

 for (int j = 0; j < x.size(); ++j) {

 if (!x[j].taken && can_add1(x[j])) {

 graph[i].push_back(j);

 }

 if (!x[j].taken && can_add2(x[j])) {

 graph[j].push_back(i);

 }

 }

 }

 }

 return graph;

} 40

bool bfs(const vector<bool> &is_s, const vector<bool> &is_t,

 const vector<vector<int>> &graph, vector<GroundSetElement> &x) {

 queue<int> q;

 vector<int> parent(x.size(), -1);

 for (int i = 0; i < x.size(); ++i) {

 if (is_s[i]) {

 q.push(i);

 parent[i] = i;

 }

 }

 while (!q.empty()) {

 int v = q.front();

 q.pop();

 if (is_t[v]) {

 update_taken(parent, x, v);

 return true;

 }

 for (int to : graph[v]) {

 if (parent[to] == -1) {

 parent[to] = v;

 q.push(to);

 }

 }

 }

 return false;

}

41

void update_taken(const vector<int> &parent,

 vector<GroundSetElement> &x, int id) {

 while (true) {

 x[id].taken ^= 1;

 if (id == parent[id]) {

 break;

 }

 id = parent[id];

 }

}

42

Matroids intersection. Weighted case

In order to solve a weighted of matroid intersection we should run almost the

same algorithm. Let’s assign a cost for each vertex from the right part equal to

𝑤𝑟𝑣 and from the left part to −𝑤𝑙𝑣. Then instead of bfs we have to find a shorted

weighted path (in case when there are several minimum weighted paths, we

have to select the one with minimum number of vertices). The weight of path is

equal to the sum of all vertices on the path. The shortest path can be found using

Ford-Bellman algorithm which takes 𝑂(𝑟 ⋅ 𝑋 2) time.

There’re 𝑟 iterations of our algorithm, so the total complexity will be equal to

𝑂(𝑟2 𝑋 2).

43

Matroids union

Consider the following problem. We have a set of

objects 𝑋 and several matroids 𝑀1 = 〈𝑋, 𝐼1〉 ,

𝑀2 = 〈𝑋, 𝐼2〉, …, 𝑀𝑘 = 〈𝑋, 𝐼𝑘〉. We want to find pairwise

disjoint sets 𝐴1 ∈ 𝑋, 𝐴2 ∈ 𝑋, … , 𝐴𝑘 ∈ 𝑋 (for any

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , 𝐴𝑖 ∩ 𝐴𝑗 = ∅), such that 𝐴1 ∈ 𝐼1, 𝐴2 ∈

𝐼2, … , 𝐴𝑘 ∈ 𝐼𝑘 and their union is maximum possible:

𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑘 → 𝑚𝑎𝑥.

For example, if objects 𝑋 are edges and all 𝑘

matroids are graphic, this problem can be formulated

as finding 𝑘 pairwise disjoint spanning trees.

44

Matroids union

In order to solve this problem, let’s make exactly 𝑘

copies of the set 𝑋 – 𝑋1, 𝑋2, … , 𝑋𝑘 . Then build a

colorful matroid 𝑀𝑐 = 〈𝑋1 ∪ 𝑋2 ∪ ⋯ ∪ 𝑋𝑘 , 𝐼〉 , where a

color for each object is equal to the index of object

from which it was copied.

The second matroid 𝑀 = 〈𝑋1 ∪ 𝑋2 ∪ ⋯ ∪ 𝑋𝑘 , 𝐼〉 says

that a subset 𝐴 is independent if 𝐴 ∩ 𝑋1 ∈ 𝐼1, 𝐴 ∩ 𝑋2 ∈

𝐼2, … , 𝐴 ∩ 𝑋𝑘 ∈ 𝐼𝑘. It’s easy to see, that intersection of

two matroiods 𝑀𝑐 ∩ 𝑀 gives us an answer for a

problem.

45

Thanks for your attention!

46

