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Greedy algorithms 

There are kind of problems where you are given a set of objects and you have to 

select some subset from it that meets certain properties. 

For example, in a Hamiltonian path problem you are given a set of edges and you 

have to select some subset of edges that forms a simple path going through all 

the vertices. 

Another example could be Minimal Spanning Tree problem. Again, you are given 

a set of weighted edges and have to select some subset of edges with minimal 

total weight that forms a spanning tree. 

Matroid theory helps to generalize such kind of problems. 
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Matroids 

Let’s denote the given set of objects as 𝑋. We will call this set of objects as ground 

set (носитель матроида). 

Among all 2 𝑋  subsets of 𝑋 there are some “good” subsets. Let’s call these 

subsets “independent” and denote the set of all independent subsets as 𝐼: 𝐼 ⊂ 2𝑋. 

We are going to call all other subsets (2𝑋 \ 𝐼) are “bad”, “not independent”, or 

“dependent”.  

Then a pair 𝑀 = 〈𝑋, 𝐼〉 forms a valid matroid iff the set 𝐼 meets all 3 following 

axioms. 
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Matroid axioms 

1. Empty set is independent (∅ ∈ 𝐼). 

2. Any subset of independent set is independent (if 𝐵 ∈ 𝐼 and 𝐴 ⊂ 𝐵, then 𝐴 ∈ 𝐼). 

3. If independent set 𝐴 has smaller size than independent set 𝐵, there exists at 

least one element in 𝐵 that can be added into 𝐴 without loss of independency 

(if 𝐴, 𝐵 ∈ 𝐼 and 𝐴 < 𝐵 , then ∃𝑥 ∈ 𝐵\𝐴 such that 𝐴 ∪ 𝑥 ∈ 𝐼). 
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Example of a matroid 

Consider the following example, where 𝑋 = 𝑥, 𝑦, 𝑧  

and 𝐼 = {}, 𝑥 , 𝑦 , 𝑧 , 𝑥, 𝑦 , 𝑥, 𝑧 .  

1. Empty set is independent. 

2. For example for 𝐵 = 𝑥, 𝑧  all its subsets 𝑥 , 𝑧  

and {} are also independent. 

3. For example for 𝐴 = {𝑧} and 𝐵 = {𝑥, 𝑦} we can 

add 𝑥  to the set 𝐴  so that it remains 

independent. 
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Bases of a matroid 

1. Any independent set of maximum size is called a basis of given matroid. In 

other words there is no element that can be added to a basis without loss of 

independency.  

2. All bases have equal size (otherwise we can add something to smaller basis 

from greater basis by third axiomatic property). Directly from previous, no basis is 

a subset of other basis.  

3. Any independent set is a subset of some basis (by third property we can 

continue increasing its size until reaching some basis), so it is enough to only 

know about all bases of matroid to completely describe it. 
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Circuits of a matroid 

1. Dependent set is a circuit if all subsets (excluding whole set) of this set are 

independent. In other words, circuit is dependent set, that does not allow 

removing any of its elements without gaining independence.  

2. No circuit is a subset of another circuit (otherwise we can remove some 

elements from greater circuit without removing dependence). Each dependent 

set contains at least one circuit as a subset.  

3. Same as bases, it is enough to only know about all circuits of a matroid to 

completely describe it. 
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Most common matroids. Universal matroid 

1. Matroid that considers subset 𝐴 independent if size of 𝐴 is not greater than 

some constant 𝑘 (𝐴 ∈ 𝐼 iff |𝐴| ≤ 𝑘). Simplest one, this matroid does not really 

distinguish elements of ground set in any form, it only cares about number of 

taken elements.  

2. All subsets of size 𝑘 are bases for this matroid. 

3. All subsets of size (𝑘 + 1) are circuits for this matroid. 
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Most common matroids. Colorful matroid 

1. Ground set 𝑋 consists of colored elements. Each element has exactly one 

color. Set of elements is independent if no pair of included elements share a 

color.  

2. Size of basis is amount of different colors included into a set 𝑋. Bases of this 

matroid are sets that have exactly one element of each color.  

3. Circuits of this matroid are all possible pairs of elements of the same color. 

Colors can be enumerated with integers for practical purposes. 
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Most common matroids. Graphic matroid 

1. Ground set 𝑋 consists of edges of some undirected graph. Set of edges is 

independent if it does not contain a cycle. This type of matroids is the greatest 

one to show some visual examples, because it can include dependent subsets 

of a large size and can be represented on a picture at the same time.  

2. If graph is connected then any basis of this graph is just a spanning tree of this 

graph. Otherwise basis is a forest of spanning trees that include one spanning 

tree for each connected component.  

3. Circuits are simple loops of this graph. 
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Most common matroids. Linear algebra matroid 

1. Ground set 𝑋 consists of edges of vectors of some vector space. Set of vectors 

is considered independent if it is linearly independent (no vector can be 

expressed as linear combination of other vectors from that set). This is the 

matroid from which whole matroid theory originates from.  

2. Linear bases of vector set are bases of matroid.  

3. Any circuit of this matroid is set of vectors, where each vector can be 

expressed as combination of all other vectors, but this combination involves all 

other vectors in circuit. 
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Finding a basis in matroid. Square solution 

 
Consider the following problem: we have to find a basis in matroid 𝑀 = 〈𝑋, 𝐼〉. 

According to third matroid property, if we have some independent set 𝑆 which size 

is less than size of a basis, we can find some element 𝑥 that can be added to 𝑆 

without loss of independence. So, we can start with empty set that is guaranteed 

to be independent and add elements one-by-one performing a linear scan over 

ground set to find next element to add.  

This algorithm takes 𝑂 𝑛2  time, where 𝑛 = |𝑋|, because in each step it’s looking 

for some of the 𝑛 elements that is possible to add. 
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Finding a basis in matroid. Square solution 

 
vector<GroundSetElement> get_basis(vector<GroundSetElement> X) { 

    vector<GroundSetElement> S; 

    for (int found = 1; found; ) { 

        found = 0; 

        for (const auto &x : X) { 

            if (can_add(S, x)) { 

                S.push_back(x); 

                found = 1; 

                break; 

            } 

        } 

    } 

    return S; 

} 
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Finding a basis in matroid. Linear solution 

 
However it’s possible to speed up described algorithm. 

In order to do that we should notice, that if on some step of our algorithm element 

𝑥 wasn’t added into set 𝑆 it will never be possible to add it on any future step. It’s 

because if 𝑆 ∪ {𝑥} was considered dependent on some step, it includes some 

circuit 𝐶, that means that all future versions of 𝑆 combined with element 𝑥 will 

contain the circuit 𝐶 and be dependent. 

So we can find a basis in one single scan, if we will take elements greedily 

(include element into 𝑆 if 𝑆 ∪ 𝑥 ∈ 𝐼). Time complexity – 𝑂 𝑛 . 
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Finding a basis in matroid. Linear solution 

 
vector<GroundSetElement> get_basis(vector<GroundSetElement> X) { 

    vector<GroundSetElement> S; 

    for (const auto &x : X) { 

        if (can_add(S, x)) { 

            S.push_back(x); 

        } 

    } 

    return S; 

} 
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Rado-Edmonds algorithm 

 

 
Consider the weighted version of previous problem. Each element 𝑥 ∈ 𝑋 has some 

weight and we have to find a basis with minimum total weight. 

Let’s assume that we have already found an independent set 𝐴 of size 𝑘 with 

minimum total weight and now we want to find minimum total weight of 

independent set with size 𝑘 + 1. 

Let’s denote independent set with size 𝑘 + 1 with minimum total weight as 𝐵. 
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Rado-Edmonds algorithm 

 

 
Since 𝐴 < 𝐵 , by the third axiom there is some element 𝑦 ∈ 𝐵\𝐴 such that 

𝐴 ∪ 𝑦 ∈ 𝐼. 

Since 𝐴 is an independent set of size 𝑘 with minimum total weight and 𝐵\{𝑦} is 

some independent set of size 𝑘, the following inequality meets: 𝑤 𝐴 ≤ 𝑤(𝐵\{𝑦}). 

Since 𝐵 is an independent set of size (𝑘 + 1) with minimum total weight and 

A ∪ {𝑦} is some independent set of size (𝑘 + 1), the following inequality meets: 

𝑤 𝐴 ∪ {𝑦} ≥ 𝑤(𝐵). 

Let’s add 𝑤(𝑦) to both sides of the first inequality. 
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Rado-Edmonds algorithm 

 

 
𝑤 𝐴 + 𝑤 𝑦 ≤ 𝑤(𝐵\{𝑦}) + 𝑤(𝑦) 

𝑤 𝐴 ∪ {𝑦} ≤ 𝑤(𝐵) 

Combining this result with second inequality we obtain that 𝑤 𝐴 ∪ {𝑦} ≤ 𝑤 𝐵 ≤

𝑤 𝐴 ∪ {𝑦} , which means that 𝑤 𝐴 ∪ 𝑦 = 𝑤(𝐵). 

It means that there always exists some element 𝑦 that can be added into 𝐴 to 

obtain an independent set with size 𝑘 + 1 with minimum total weight. 

So in order to get an independent set with size 𝑘 + 1 with minimum total weight, 

we should find an element 𝑦 with minimum weight such that 𝐴 ∪ 𝑦 ∈ 𝐼 and add 𝑦 

into the 𝐴. 
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Rado-Edmonds algorithm 

 

 
Combining obtained result with the algorithm for the unweighted version of the 

problem, we can get the following algorithm: 

1. Sort all elements from 𝑋 by their weight. 

2. Consider all elements 𝑥 ∈ 𝑋 in sorted order and include it into 𝑆 if 𝑆 ∪ 𝑥 ∈ 𝐼. 

Time complexity – 𝑂 𝑛 log 𝑛 . 

You can notice, that for graphic matroid this algorithm transforms into the 

Kruskal’s algorithm. 
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Rado-Edmonds algorithm 

 

 
vector<GroundSetElement> get_basis(vector<GroundSetElement> X) { 

    sort(X.begin(), X.end(), cmp_by_weight); 

    vector<GroundSetElement> S; 

    for (const auto &x : X) { 

        if (can_add(S, x)) { 

            S.push_back(x); 

        } 

    } 

    return S; 

} 
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Lemma about circuits 

 

 
Lemma 1. For any two different cycles 𝐶1 and 𝐶2 and for any element 𝑥 ∈ 𝐶1 ∪ 𝐶2, 

𝐶1 ∪ 𝐶2 \ {𝑥} is dependent. If 𝑥 ∉ 𝐶1 or 𝑥 ∉ 𝐶2 the proof is obvious. Consider a case 

when 𝑥 ∈ 𝐶1 ∩ 𝐶2. Let’s 𝐷 = 𝐶1 ∪ 𝐶2 \ {𝑥} and 𝐴 = 𝐶1 ∩ 𝐶2. 

Let’s assume that 𝐷  is independent. Since circuits 𝐶1  and 𝐶2  are different,  

𝐷 = 𝐶1 \ 𝐶2 + 𝐶2 \ C1 + 𝐴 − 1 ≥ 1 + 1 + 𝐴 − 1 = 𝐴 + 1 > |𝐴|. 

Since 𝐴 < |𝐶1|, |𝐶1| is a circuit and 𝐴 ⊂ 𝐶1, 𝐴 is independent. By applying third 

axiom multiple times we can get independent set 𝐵 such that 𝐴 ⊂ 𝐵 and 𝐵 = |𝐷|. 
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Lemma about circuits 

 

 
Since 𝐶1 is a circuit, there’s some element in 𝐶1 \ 𝐴 but not in 𝐵. Symmetrically 

there’s some element in 𝐶2 \ 𝐴 but not in 𝐵. It means that 𝐵 contains no more than 

𝐶1 \ 𝐴 − 1 elements from 𝐶1, no more than 𝐶2 \ 𝐴 − 1 elements from 𝐶2, exactly 

|𝐴| elements from 𝐴 and no other elements. 

We get 𝐵 ≤ 𝐴 + 𝐶1 \ 𝐴 − 1 + 𝐶2 \ 𝐴 − 1 = 𝐶1 ∪ 𝐶2 − 1 = 𝐷 − 1 < |𝐷|. But 

we assumed that 𝐵 = |𝐷|, so we got the contradiction. 

So we have proved that for any two different cycles 𝐶1 and 𝐶2 and for any element 

𝑥 ∈ 𝐶1 ∪ 𝐶2, set 𝐶1 ∪ 𝐶2 \ {𝑥} is dependent. 
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Maintaining basis of minimum weight 

 

 
Consider modification of the previous problem. We don’t know all elements 𝑋 in 

advance, but they are being added one by one instead. After addition of each 

element we want to find a basis with minimum total weight. 

Suppose that we have the optimal basis 𝑆 and want to process new element 𝑥 

with weight 𝑤. There’re two cases: 

1. 𝑆 ∪ {𝑥} ∈ 𝐼. In that case we can just add 𝑥 into 𝑆, because it’s the only way to 

obtain a basis (all independent subsets which don’t contain 𝑥 have size at most 

𝑆 , which is smaller than |𝑆 ∪ {𝑥}|). 
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Maintaining basis of minimum weight 

 

 
2. 𝑆 ∪ {𝑥} ∉ 𝐼. Let’s prove that in such a case set 𝑆 ∪ 𝑥 contains exactly one circuit 

𝐶 (𝑥 ∈ 𝐶). Of course it can’t contain zero circuits because 𝑆 ∪ {𝑥} is dependent.  

Let’s suppose that 𝑆 ∪ {𝑥} contains more than one circuit. Let’s denote some 

second circuit as 𝐶2  ( 𝐶2 ≠ 𝐶 ). According to lemma 1, 𝐷 = 𝐶 ∪ 𝐶2 \ {𝑥}  is 

dependent. But 𝐷 is a subset of independent set 𝑆 and by second axiom should 

be also independent. Contradiction, which means that 𝑆 ∪ {𝑥} contains exactly one 

circuit. 

By definition removing any element from circuit leads to independent set, which 

means that 𝑆 ∪ {𝑥} \ {𝑦} ∈ 𝐼 for 𝑦 ∈ 𝐶. In order to receive the minimum weight of 

independent set 𝑆, we have to remove element from 𝐶 with maximum weight. 
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Maintaining basis of minimum weight 

 

 
For example, in order to recalculate 

minimum spanning tree after adding 

edge 2 → 6 with weight 29, we have to 

detect cycle 1 → 2 → 6 → 3 → 1  and 

remove edge 3 → 6 with the maximum 

weight 41. 
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Matroids intersection 

Unfortunately not much problems, where we have to select some “good” subset of 

objects, can be represented as a matroid formulation. However, much wider range 

of tasks can be represented in terms of intersection of several matroids. 

Matroids intersection of several matroids 𝑀1 = 〈𝑋, 𝐼1〉, 𝑀2 = 〈𝑋, 𝐼2〉, …, 𝑀𝑘 = 〈𝑋, 𝐼𝑘〉, 

defined on the same ground set 𝑋, represents “good” subsets as an intersection 

𝐼1 ∩ 𝐼2 ∩ ⋯ ∩ 𝐼𝑘. The task is to find a set of objects 𝑆 ⊂ 𝑋 with maximum size such 

that 𝑆 ∈ (𝐼1 ∩ 𝐼2 ∩ ⋯ ∩ 𝐼𝑘 ). The weighted version of this task is to find a 

corresponding set 𝑆 with maximum size but also with minimum total weight of 

objects. 
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Matroids intersection 

Being able to solve matroids intersection problem allows to solve a wide range of 

tasks. For example, in order to solve a Hamiltonian path problem, we can intersect 

three following matroids on ground set of edges of a directed graph: 

1. Ensure each vertex has at most 1 outcoming power (can be represented as 

colorful matroid, paint edges that come out of the same vertex into one color) 

2. Ensure each vertex has at most 1 incoming power 

3. Ensure there is no loops (forget about edges direction and check that edges 

form a forest of spanning trees) 
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Matroids intersection 

Unfortunately, intersection of three and more matroids in NP-complete task. 

However, intersection of two matroids can be done in polynomial time. 

It allows us, for example, to solve problem about finding a colorful spanning tree, 

where we have to select a set of edges which forms spanning tree and at the 

same time all colored in the different color. 
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Matroids intersection is not a matroid 

The first idea to solve matroids intersection problem is to suppose that intersection 

of two matroids 𝑀1 = 〈𝑋, 𝐼1〉 and 𝑀2 = 〈𝑋, 𝐼2〉 is also a matroid 𝑀 = 〈𝑋, 𝐼1 ∩ 𝐼2〉. 

Indeed, first two axioms are obviously true: empty set is independent in both 𝐼1 

and 𝐼2, and any subset of independent set is also independent in both matroids. 

However, the third axiom doesn’t hold.  

Consider mentioned earlier problem about colorful spanning tree, where first 

matroid 𝑀1 = 〈𝑋, 𝐼1〉 is graphic, and the second matroid 𝑀2 = 〈𝑋, 𝐼2〉 is coloful. 
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Matroids intersection is not a matroid 

Consider two independent sets in both matroids: 

𝐴 = {𝑎, 𝑐} , 𝐵 = {𝑎, 𝑏, 𝑑} . 𝐴 < |𝐵| , however we cann’t 

add any element from 𝐵 into 𝐴. Adding edge 𝑑 will lose 

independence in graphic matroid 𝑀1 = 〈𝑋, 𝐼1〉 , while 

adding edge 𝑏 will lose independence in colorful matroid 

𝑀2 = 〈𝑋, 𝐼2〉. 

This example shows that third axiom doesn’t hold, which 

means that greedy algorithm, which add objects one by 

one, will not work correctly. 
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Matroids intersection 

However it’s still possible two 

increase size of 𝐴 by one. In order 

to do this, let’s built the following 

directed bipartite graph. Left part 

of this graph will contain all 

objects from 𝐴, while the right part 

will contain all other objects from 

𝑋 \ 𝐴. 
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Matroids intersection 

Denote the set 𝑆  as set of all 

objects from the right part of the 

graph such that adding it into 𝐴 

keeps independency in 𝐼1 . Let’s 

paint these objects in green color.  

Denote the set 𝑇  as set of all 

objects from the right part of the 

graph such that adding them into 

𝐴 keeps independency in 𝐼2. Let’s 

paint these objects in yellow color. 
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Matroids intersection 

Let’s add an edge from the left 

vertex 𝑢 to the right vertex 𝑣 

when 𝐴 \ 𝑢 ∪ 𝑣 ∈ 𝐼1. 

Symmetrically let’s add an edge 

from the right vertex 𝑣 to the left 

vertex 𝑢 when 𝐴 \ 𝑢 ∪ 𝑣 ∈ 𝐼2. 
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Matroids intersection 

Let’s find the shortest path from 

vertex some green vertex 𝑠 ∈ 𝑆 

to some yellow vertex 𝑡 ∈ 𝑇. It’s 

easy to see that any such path 

contains some set 𝐿 of vertices 

from the left part and set 𝑅 of 

vertices from the right part, 

where 𝑅 = 𝐿 + 1. 

It can be proven that 𝑋 \ 𝐿 ∪ 𝑅 ∈

𝐼1 ∩ 𝐼2, so we can increase size 

of chosen set by one. 
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Matroids intersection 

In our example the shortest path 

is equal to 𝑏 → 𝑐 → 𝑑 , which 

means that we are going to 

change set 𝐴 = {𝑎, 𝑐} to the set 

𝐴 = 𝑎, 𝑐  \ 𝑐 ∪ 𝑏, 𝑑 = {𝑎, 𝑏, 𝑑}. 
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Matroids intersection 

Why is it correct? Since 𝑏 ∈ 𝑆 , 

object 𝑏 can be added into 𝐴 and 

keeps independency in 𝐼1 . Also 

there’s an edge 𝑏 → 𝑐 , which 

means that after removing 𝑐 , 

adding 𝑏 keeps independency in 

𝐼2 as well.   

The same holds for an element 𝑑. 
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Matroids intersection 

If a path from 𝑆 to 𝑇 doesn’t exist, 

then size of set 𝐴 is maximum 

possible. 

There’re 𝑟  iterations of our 

algorithm, each takes 𝑂(𝑟 ⋅ |𝑋| ) 

time for building a bipartite graph 

and 𝑂(𝑟 ⋅ 𝑋 )  for finding the 

shortest path. 

The total complexity – 𝑂(𝑟2|𝑋|). 
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struct GroundSetElement { 

    int from, to, color; 

    bool taken; 

  

    GroundSetElement(int from, int to, int color): from(from), to(to), 

                                                   color(color), taken(false) { 

    } 

}; 

  

int matroid_intersection(vector<GroundSetElement> &X) { 

    int result = 0; 

    while (augment(X)) { 

        ++result; 

    } 

    return result; 

} 
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bool augment(vector<GroundSetElement> &x) { 

    init(x); 

    vector<bool> is_s(x.size()), is_t(x.size()); 

    for (int i = 0; i < x.size(); ++i) { 

        if (!x[i].taken) { 

            is_s[i] = can_add1(x[i]); 

            is_t[i] = can_add2(x[i]); 

        } 

    } 

    vector<vector<int>> graph = build_graph(x); 

    return bfs(is_s, is_t, graph, x); 

} 
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vector<vector<int>> build_graph(vector<GroundSetElement> &x) { 

    vector<vector<int>> graph(x.size()); 

    for (int i = 0; i < x.size(); ++i) { 

        if (x[i].taken) { 

            x[i].taken = false; 

            init(x); 

            x[i].taken = true; 

            for (int j = 0; j < x.size(); ++j) { 

                if (!x[j].taken && can_add1(x[j])) { 

                    graph[i].push_back(j); 

                } 

                if (!x[j].taken && can_add2(x[j])) { 

                    graph[j].push_back(i); 

                } 

            } 

        } 

    } 

    return graph; 

} 40 



bool bfs(const vector<bool> &is_s, const vector<bool> &is_t, 

         const vector<vector<int>> &graph, vector<GroundSetElement> &x) { 

    queue<int> q; 

    vector<int> parent(x.size(), -1); 

    for (int i = 0; i < x.size(); ++i) { 

        if (is_s[i]) { 

            q.push(i); 

            parent[i] = i; 

        } 

    } 

    while (!q.empty()) { 

        int v = q.front(); 

        q.pop(); 

        if (is_t[v]) { 

            update_taken(parent, x, v); 

            return true; 

        } 

        for (int to : graph[v]) { 

            if (parent[to] == -1) { 

                parent[to] = v; 

                q.push(to); 

            } 

        } 

    } 

    return false; 

} 
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void update_taken(const vector<int> &parent, 

                  vector<GroundSetElement> &x, int id) { 

    while (true) { 

        x[id].taken ^= 1; 

        if (id == parent[id]) { 

            break; 

        } 

        id = parent[id]; 

    } 

} 
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Matroids intersection. Weighted case 

In order to solve a weighted of matroid intersection we should run almost the 

same algorithm. Let’s assign a cost for each vertex from the right part equal to 

𝑤𝑟𝑣 and from the left part to −𝑤𝑙𝑣. Then instead of bfs we have to find a shorted 

weighted path (in case when there are several minimum weighted paths, we 

have to select the one with minimum number of vertices). The weight of path is 

equal to the sum of all vertices on the path. The shortest path can be found using 

Ford-Bellman algorithm which takes 𝑂(𝑟 ⋅ 𝑋 2) time.  

There’re 𝑟 iterations of our algorithm, so the total complexity will be equal to 

𝑂(𝑟2 𝑋 2). 
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Matroids union 

Consider the following problem. We have a set of 

objects 𝑋  and several matroids 𝑀1 = 〈𝑋, 𝐼1〉 , 

𝑀2 = 〈𝑋, 𝐼2〉, …, 𝑀𝑘 = 〈𝑋, 𝐼𝑘〉. We want to find pairwise 

disjoint sets 𝐴1 ∈ 𝑋, 𝐴2 ∈ 𝑋, … , 𝐴𝑘 ∈ 𝑋  (for any 

1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , 𝐴𝑖 ∩ 𝐴𝑗 = ∅ ), such that 𝐴1 ∈ 𝐼1, 𝐴2 ∈

𝐼2, … , 𝐴𝑘 ∈ 𝐼𝑘 and their union is maximum possible: 

𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑘 → 𝑚𝑎𝑥. 

For example, if objects 𝑋  are edges and all 𝑘 

matroids are graphic, this problem can be formulated 

as finding 𝑘 pairwise disjoint spanning trees. 
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Matroids union 

In order to solve this problem, let’s make exactly 𝑘 

copies of the set 𝑋  – 𝑋1, 𝑋2, … , 𝑋𝑘 . Then build a 

colorful matroid 𝑀𝑐 = 〈𝑋1 ∪ 𝑋2 ∪ ⋯ ∪ 𝑋𝑘 , 𝐼〉 , where a 

color for each object is equal to the index of object 

from which it was copied. 

The second matroid 𝑀 = 〈𝑋1 ∪ 𝑋2 ∪ ⋯ ∪ 𝑋𝑘 , 𝐼〉  says 

that a subset 𝐴 is independent if 𝐴 ∩ 𝑋1 ∈ 𝐼1, 𝐴 ∩ 𝑋2 ∈

𝐼2, … , 𝐴 ∩ 𝑋𝑘 ∈ 𝐼𝑘. It’s easy to see, that intersection of 

two matroiods 𝑀𝑐 ∩ 𝑀  gives us an answer for a 

problem. 
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Thanks for your attention! 
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