A. Morning Routine

Limits: 1 sec., 256 MiB

Every morning (around 6:00 AM) Zenyk is solving the following problem.

Zenyk is given a string consisting of upper case characters A and B. In a single turn he can remove the first and the last occurrences of any character, but only if they don't coincide. What is the lexicographically smallest non-empty string that he can obtain after any number of turns?

String s is considered lexicographically smaller than t if s is a prefix of t, or s has a smaller character at the first position they differ (from left to right).

Input

The only line contains the initial string s that was given to Zenyk.

Output

Print the answer to the problem.

Constraints

 $1 \le |s| \le 10^5$,

s consists only of characters ${\tt A}$ and ${\tt B}.$

Input (stdin)	Output (stdout)
BBABBAB	АВА

B. Towers

Limits: 2 sec., 256 MiB

Zenyk and Marichka like tower sequences. Tower sequence is a sequence of n towers in a row.

Let's assume that the height of the *i*-th tower is A_i . Let's say that tower *j* is visible from tower *i* if tower *j* is strictly higher than all towers between tower *i* and tower *j* (not including the *i*-th tower). More formally, let *S* be the range of all towers between *i*-th and *j*-th tower. This means that S = [i + 1, j - 1] if j > i, and S = [j + 1, i - 1] otherwise. The *j*-th tower is visible from the tower *i* if $\forall_{k \in S} A_j > A_k$.

Let B_i be the number of towers visible from tower *i* (not including tower *i*). Marichka calls a sequence of towers lucky if $A_i = B_i$ for all *i*. You task is to find the number of lucky sequences of *n* towers modulo prime number *m*.

Input

The first line contains 2 integers n and m.

Output

Print one number — the number of lucky sequences of n towers modulo m.

Constraints

 $2 \leq n \leq 1000,$ $10^7 \leq m \leq 10^9, \, m$ is prime.

Samples

Input (stdin)	Output (stdout)
7 47774477	3

Notes

Lucky sequences are [1, 2, 2, 2, 2, 2, 1], [2, 2, 3, 2, 3, 2, 2], [2, 3, 2, 4, 2, 3, 2].

C. Zero Cycle

Limits: 2 sec., 256 MiB

Zenyk and Marichka have a graph with n vertices and m edges. *i*-th edge is directed from vertex v_i to vertex $u_i, v_i \neq u_i$. Let $(v_i \rightarrow u_i)$ denote such edge.

Marichka wants to assign a weight to each edge such that all weights are non-zero integers in range [-1000, 1000]. Also Marichka wants the sum of edges on any cycle to be 0. Cycle is a sequence of edges $(a_1 \rightarrow a_2), (a_2 \rightarrow a_3), \ldots, (a_{k-1} \rightarrow a_k), (a_k \rightarrow a_1)$. If edges $(x \rightarrow y)$ and $(y \rightarrow x)$ both exist they also form a cycle. Help her with that task.

Input

First line contains two integers n and m – number of vertices and number of edges, respectively. Next m lines contain two integers each v_i and u_i which means that *i*-th edge goes from v_i to u_i .

Output

Print *m* numbers: *i*-th number should be the weight of *i*-th edge. Each number should be non-zero and in range [-1000, 1000]. If multiple answers exist you may print any one of them.

Constraints

$$\begin{split} & 1 \leq n \leq 10^5, \\ & 1 \leq m \leq 2 \cdot 10^5, \\ & 1 \leq v_i, u_i \leq n, \, v_i \neq u_i. \end{split}$$

Input (stdin)	Output (stdout)
4 7	4
1 2	-7
2 3	3
3 1	47
1 4	-774
2 4	-447
1 4	7
3 2	

D. Random GCD

Limits: 1 sec., 256 MiB

Zenyk has an array A of n integers. Marichka wants to find the greatest common divisor of this array.

To find it Zenyk wrote the following C++ program:

```
random_shuffle(A.begin(), A.end());
int count = 0;
int result = A[0];
for(int i = 1; i < n; i++) {
    if (result == 1)
        break;
    result = gcd(result, A[i]);
    count ++;
}
```

Here we assume that after random_shuffle each permutation of array A is equiprobable and gcd(a,b) is the greatest common divisor of a and b. Zenyk is interested what is the expected value of count at the end of such a process.

Input

First line contains single integer n. Second line contains n integers A_i – elements of array.

Output

Print one value — the expected value of count. Answer is considered to be correct if its absolute or relative error is less than 10^{-7} .

Constraints

 $1 \le n \le 10^6,$ $1 \le A_i \le 10^6.$

Input (stdin)	Output (stdout)
4	1.91666666666666
4 7 4 14	

E. Longest Vector

Limits: 2 sec., 256 MiB

Zenyk has n 2-dimensional vectors but Marichka thinks that these vectors are not long enough. Zenyk wants to find such a subset of his vectors so that their sum is the longest possible.

Input

First line contains a single integer n. Next n lines contain 2 integers each x_i and y_i — coordinates of the *i*-th vector.

Output

Print one integer — squared length of the longest possible vector Zenyk can create.

Constraints

 $\begin{array}{l} 1 \leq n \leq 2 \cdot 10^5, \\ -10^9 \leq x_i, y_i \leq 10^9. \end{array}$

Input (stdin)	Output (stdout)
4	8
1 0	
0 1	
1 1	
-1 -1	
7	980000000000000000
100000000 100000000	
100000000 100000000	
100000000 100000000	
100000000 100000000	
100000000 100000000	
100000000 100000000	
100000000 100000000	

F. Consecutive Triangles

Limits: 1 sec., 256 MiB

Marichka and Zenyk have n sticks. The length of the *i*-th stick is i (1-indexing).

Marichka wants to place all the sticks in a row so that it isn't possible to create a non-degenerate triangle using any triplet of consecutive sticks. Help her with that task.

Input

A single integer n.

Output

Print n integers — a permutation of sticks such that it's not possible to create a triangle using any consecutive triplet of sticks. If several answers exist print any of them.

Constraints

 $3 \leq n \leq 10^5.$

Input (stdin)	Output (stdout)
4	4 1 2 3

G. Can You Do This?

Limits: 1 sec., 256 MiB

Given two integers a and b (a < b) find the smallest positive integer c such that a OR c > b OR c.

Input

The only line contains two integers a and b.

Output

Print a single integer c — the answer. If no such integer exists, print -1.

Constraints

 $0 < a < b < 10^{18}.$

Samples

Input (stdin)	Output (stdout)
47 74	64

Notes

 $\tt OR$ stands for bitwise OR operation.

H. Moving Balls

Limits: 1 sec., 256 MiB

Zenyk has n balls placed on a line, the *i*-th ball is initially located in the p_i -th cell. No two balls can ever occupy a single cell. A robot $x \to y$ can go from cell x to cell y and push all the balls on its way. If one ball stands on the way of another ball, then it's also pushed. E. g. if you apply robot $1 \to 4$ to 1011000001 (1-based index) you'll get 0000111001. (Here 1 indicates a cell occupied by a ball, while 0 – an empty one.) Note that some robots may go from right to left.

The goal is to have all the balls placed in a row next to each other, i. e. without empty spaces between them. If you have a sequence of robots $x_1 \rightarrow y_1, ..., x_k \rightarrow y_k$, you can use each robot as many times as you like and in any order to achieve the goal.

You have a sequence of pairs $(x_1, y_1), ..., (x_m, y_m)$. You have to assign a direction to each of them, and you'll get either robot $x_i \to y_i$ or $y_i \to x_i$ for each pair. Find the number of ways to do it such that the goal is achievable.

Input

The first line containts two integers n and m. The next line contains n distinct intigers p_i — the initial locations of all the balls. The following m lines contain pairs (x_i, y_i) .

Output

The number of ways to assign directions modulo $10^9 + 7$.

Constraints

$$\begin{split} & 1 \leq n, m \leq 2000, \\ & 1 \leq p_i, x_i, y_i \leq 10^6, \\ & x_i \leq y_j. \end{split}$$

Input (stdin)	Output (stdout)
3 3	5
1 4 6	
3 5	
1 4	
6 7	

I. Shoot for the Stars

Limits: 1 sec., 256 MiB

Given a connected graph with n vertices and n-1 edges you have to delete at most $\frac{n}{2}$ (rounded down) edges such that each connected component of the resulting graph is a star.

A star is such a graph that contains at most one vertex that has more than one edge connected to it.

Input

The first line contains a single integer n.

The next n-1 lines contain a pair of integer x_i , y_i each which means that vertices x_i and y_i are connected with an edge.

Output

On the first line of the output print one integer k — the number of edges to be removed from the graph.

On the second line print n integers — indices of the edges (1-based) to be removed from the graph. If there are multiple possible answers, print any one of them. If there is no answers at all print -1.

Constraints

$$\begin{split} &1 \leq n \leq 10^5, \\ &1 \leq x_i, y_i \leq n, \\ &0 \leq k \leq \frac{n}{2} \text{ (rounded down).} \end{split}$$

Samples

Input (stdin)	Output (stdout)
10	2
1 3	4 7
3 2	
4 3	
3 5	
5 6	
79	
6 9	
8 9	
9 10	

Notes

Note that you do not have to minimize the number of edges deleted. Any solution with at most $\frac{n}{2}$ edges deleted will be accepted.