
Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

A. All-Star

Author: Pavle Martinović
Solved by: 77/82

First to solve: UniBuc_KoalifiedKoalas

Let d be the largest degree of a node in the tree. We will prove that the answer is n− 1− d.

First, we can immediately notice that if we make a move on outhouses x, y and z, we will increase
the degree of x by 1 and decrease the degree of y by 1. This means that we can increase the maximum
degree in the tree by at most 1 in each move. Since a star has maximum degree n − 1, we need to
make at least n− 1− d moves.

Now we actually need to find a sequence of n − 1 − d moves. Let s be a vertex with degree d.
Suppose that the tree isn’t a star with center s. Then there exists a path of length 2 starting at s; say
s − x − y. Preforming a move on these vertices disconnects x and y, and connects y to s, increasing
the degree of s by 1. So, as long as the tree isn’t a star, we can increase the degree of s by 1, and so
we can preform n− 1− d moves to get s to have degree n− 1.

We can either simulate the above algorithm, taking O(N) to find the move in each step (leading to
total time complexity O(N2)). Alternatively, one can easily notice that running a DFS algorithm from
s and outputting s−x− y for every edge we encounter xy not incident to s in order will essentially do
the same thing as the above paragraph describes in O(N) time (this can be proven by induction, say).

1

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71129

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

B. NonZero PrefSuf Sums

Author: Anton Trygub
Solved by: 1/1

First to solve: Fizičari

Let’s analyze when does array [a1, a2, . . . , an] satisfy the conditions of the problem.

1. If a1 + a2 + . . . + an = 0, then it’s a NO. Now, assume a1 + a2 + . . . + an > 0 (otherwise just
negate all elements).

2. If array contains at most one nonzero value, it’s a NO.

3. Let the sum of positive elements be P , and the sum of negative elements be −N , with P > N .
Denote S = P −N . If we order all positive elements first, and then all negative, then all prefix
sums will be positive, so we only have to worry about suffix sums. Alternately, we only need to
order positive elements so that no prefix sum equals exactly S.

4. If not all positive elements are equal, then it’s always possible to order positive elements in such
a way, so it’s a YES. Indeed: assume there are some positive elements x ̸= y. First, as many
other positive elements as you can so that no prefix sum is S. If we could order all of them,
then we put x, y in one order or another, making sure new prefix sum is also not S. Otherwise,
there are some elements remaining, but we can’t append any more without getting sum exactly
S, which means all remaining elements are equal to some t. Then put x or y (whichever is ̸= t),
then t, then all remaining positive elements: we successfully avoided S.

5. Now assume all positive elements are equal to some x. If S is not divisible by x, we can still
put all positive elements, and then all others, so in that case the answer is also YES. So now we
assume that P, S,N are divisible by x.

6. Assume some negative number y isn’t divisible by x. Then let’s put y first, then all xs, then all
remaining elements. Note that every prefix sum is either positive or not divisible by x, and every
suffix sum is also either negative or not divisible by x, so the answer in this case is also YES.

7. Otherwise, all numbers are divisible by x. So let’s divide everything by x, and assume that x = 1
from now on.

8. Let’s think about the prefix sums a bit more deeply. We want each prefix sum (except the first
and last one) to be ̸= 0, S. They also start with 0, and end with S. In addition, whenever prefix
sums increase, they increase by exactly 1 (since that’s the only positive elements we have). So,
if they ever get negative, in order to get to S, they would have to cross 0 at some point.

9. So, the arranging process looks as follows. We start with 0, and then at every step we can either
use 1, increasing sum by 1, or use some negative number −x, decreasing sum by x. We cannot
ever get to 0 or S (except first or last position), so we have to always remain in the [1, S − 1]
range. So, if there exists some negative number < −(S − 2), the answer has to be NO.

10. It’s easy to see that otherwise such an arrangement always exists: just place 1s until sum doesn’t
exceed S − 1, and then use some negative number.

Now, we need to write dp for this. Once again, let’s break this down into small steps.

1. Total number of arrays is (2m+ 1)n.

2. Calculate number of arrays ∈ [−m,m]n with sum 0, you can do this in O(mn2), subtract it.

3. Need to calculate only number of bad arrays with positive sum (then multiply it by 2 and
subtract).

2

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71130

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

4. Iterate over positive element x. We know all elements have to be divisible by x, so we need to
solve the instance with positive elements equal to 1, and all elements now being in [−m

x ,
m
x].

5. Iterate over: number of ones P , and sum of negative elements −N with N < P . Then all negative
elements have to be up to S − 2 = P − N − 2. So, we need to count the number of arrays of
length n− P of nonnegative numbers with sum N with elements not exceeding P −N − 2.

6. We will use more general dp for this: dp[len][sum][lim]: the number of arrays of length len
with sum sum and all elements in [0, lim]. We can code this in O(MAXX4), where MAXX =
max(n,m). Indeed, transitions are simple: calculate values for lim from 0 to MAXX, every
time iterate how many values equal to lim you are adding.

Total runtime: max(m,n)4 with a very good constant (can actually be done faster but we reduced
constraints enough).

3

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

С. Duloc Network

Author: Adrian Miclaus
Solved by: 16/25

First to solve: [UAIC] Washbin

Let X ⊆ V . We denote by f(X) the number returned by the interactor. Let A,B ⊆ V be two sets
of vertices such that A ∩B = ∅. If f(A) + f(B) ̸= f(A ∪B), there are two cases:

• ∃x ∈ A and y ∈ B such that (x, y) ∈ E.

• ∃z ∈ V such that z /∈ (A ∪B) and ∃x ∈ A and ∃y ∈ B such that (x, z), (y, z) ∈ E.

Both cases represent the fact that x and y are connected. In fact, that also means that dist(x, y) ≤ 2
where dist is the distance between two vertices in the original graph.

Thus, we can start with A = {1} and B = {2, 3, . . . , |V |} and binary search the next vertex that
can be added to A such that we know that all vertices of A are in the same connected component.
Firstly, we can check that f(A) ̸= 0, the graph is not connected otherwise. At each step of the binary
search we divide the set B into two sets B1, B2 such that B1 has the first |B|

2 elements, and B2 the
last |B| − |B|

2 . If f(A) + f(B1) ̸= f(A ∪ B1), then we continue the search for the vertex to add to A
in B1, otherwise in B2. Then we know that the distance from the vertex we found to some vertex in
A is at most 2 and that means they are in the same connected component, so we can add that vertex
to A. The number of queries used is at most 2 · |V | log |V |.

4

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71131

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

D. Donkey and Puss in Boots

Author: Yarema Stiahar
Solved by: 90/90

First to solve: RAF 100011

Puss in Boots in his turn can take candies from all piles, so he can take all candies. Puss in Boots
can lose only if he cannot make n moves in his turn. This would happen if the total number of candies
across all piles is less than n. Therefore, the optimal strategy for Donkey is to take all the candies
from the biggest pile. There is also the case where all piles start with 0 candies. In this case, neither
player can make a move, and the game ends immediately, with Donkey’s defeat.

5

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71132

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

E. Shrooks

Author: Anton Trygub
Solved by: 0/0

First to solve: N/A

The key idea is to try to characterize all good placements of rooks. It turns out they all have to
lie on a rhombus of some sort. Note that the condition on all Manhattan distances being at most n is
equivalent to the following:

• There exist some integers A,B, such that for every rook (x, y) we have

A ≤ x− y ≤ A+ n

B ≤ x+ y ≤ B + n

Note that it follows that A + B ≤ 2x = (x − y) + (x + y) ≤ A + B + 2n for any rook (x, y), so
A+B
2 ≤ x ≤ A+B

2 + n. Since x can be any number, we get

A+B

2
≤ 1,

A+B

2
+ n ≥ n =⇒ 0 ≤ A+B

2
≤ 1 =⇒ 0 ≤ A+B ≤ 2

Similarly, we know that (B−A)−n ≤ 2y = (x+ y)− (x− y) ≤ (B−A) +n =⇒ B−A
2 − n

2 ≤ y ≤
B−A
2 + n

2 for any rook (x, y). Once again, it follows that

B −A

2
− n

2
≤ 1,

B −A

2
+

n

2
≥ n =⇒ n

2
≤ B −A

2
≤ n

2
+ 1 =⇒ n ≤ B −A ≤ n+ 2

Consider the case of odd n = 2k+1 first. Then there are 4 cases: (A,B) ∈ {(−k−1, k+1), (−k, k+
1), (−k−1, k+2), (−k, k+2)}. Each of these cases is basically defining some rhombus inside which every
rook has to be; all of them are symmetric in the sense that they can be obtained by rotating the board
by 90◦. So, we will count the number of configurations working for the case (A,B) = (−k − 1, k + 1),
and for other cases just rotate the board.

From (A,B) = (−k − 1, k + 1) it follows that for rook (n, y) we have

−k − 1 ≤ n− y ≤ −k − 1 + n, k + 1 ≤ n+ y ≤ k + 1 + n =⇒ k + 1 ≤ y ≤ k + 1 =⇒ y = k + 1

So, there definitely has to be a rook at (n, k + 1): at the middle of the bottom column. It’s not
hard to deduce where other rooks have to be.

Now it’s not hard to fill where the remaining rooks will be. Consider, for example, columns 1 and
n. From current constraints, it’s easy to see that corresponding rooks in them have to be in rows k or
k + 1. So, it’s either {(k, 1), (k + 1, n)} or {(k + 1, 1), (k, n)}. Then we can look at columns 2, n − 1,
and deduce that it’s either {(k− 1, 2), (k+2, n− 1)} or {(k+2, 2), (k− 1, n− 1)}, and so on: all other
rooks are split into pairs, for each of which there are two placement choices. We can easily find the
number of placements that satisfy already placed rooks.

However, we need to be careful to not double count any configurations. Fortunately, there are only
4 of them that satisfy two choices of A,B: one where rooks are placed at

{(1, k + 1), (2, k), (3, k − 1), . . . , (k + 1, 1), (k + 2, n), (k + 3, n− 1), . . . , (n, k + 1)}

And 4 its rotations. So just subtract whichever of these placements satisfy already placed rooks.
Runtime O(n).

The analysis for the case of even n = 2k is similar. Once again, there are 5 cases for (A,B):

{(−k, k), (−k, k + 2), (−k − 1, k + 1), (−k + 1, k + 1), (−k, k + 1)}
6

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71133

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

Here the first four are also rotations as each other, and the last one is a bit different.
The base configuration for the first 4 looks as follows: there are two rooks at cells (1, k+1), (k+1, 1),

and for 2 ≤ i ≤ k there are two rooks at {(i, k+2− i), (2k+2− i, k+ i− 2)} or at {(i, k+ i− 2), (2k+
2− i, k + 2− i)}. Once again, iterate over these 4 rotations.

(−k, k + 1) corresponds to the following:
For every 1 ≤ i ≤ k, there are two rooks at {(i, k+1− i), (2k+1− i, k+ i)} or at {(i, k− i), (2k+

1− i, k + 1− i)}.
Once again, we need to avoid double counting. In this case, configurations that might be double

counted are of form:

{(1, k), (2, k − 1), (3, k − 2), . . . , (k, 1), (k + 1, n), (k + 2, n− 1), . . . , (n, k + 1)}

And their rotations.
Runtime O(n).

7

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

F. Magical Bags

Author: Roman Bilyi
Solved by: 9/16

First to solve: Infinity

The condition on is equivalent to:

• Two bags X and Y are good if and only if max(X) > min(Y) and max(Y) > min(X).

We can create a segment [min(X),max(X)] that characterize a bag. Two bags are good iff their
corresponding segments intersect (have at least one common point).

1. It’s never optimal to leave more than 2 objects in a bag. That’s because to check all conditions,
we only use at most 2 values: minimum and maximum in the bag. If some bag contains 3 values
a < b < c, we will never use b to check whether a pair of bags is good and therefore could be
removed.

2. So all bags should contain either 1 or 2 object, and we want to maximize the number of bags
with 1 object. For now, consider the case when all bags have at least 2 objects initially. Bags
with one object don’t create any corner cases, it is just easier to explain the solution.

3. If a pair of bags isn’t good initially, it can’t become good after removing objects. It also means
that if we leave 2 objects in a bag X, it should the minimum and the maximum. We want
the segment corresponding to bag X to intersect with some other segments, and there are no
conditions that it can’t intersect with some other segments. That means it’s optimal to choose
the segment as large as we can – [min(X),max(X)].

4. Let’s call a bag promising if we can leave 1 object in this bag and 2 objects in all other bags.
Let’s find whether the bag A is promising. How to find whether we can leave the value x ∈ A as
the only remaining value?

5. We can’t leave x as the only remaining value if and only if there exist bag B such that min(A) <
max(B) < x or there exist bag C such that x < min(C) < max(A). In such case, bag A and
bag B or C were initially good but not good anymore. To implement this, we can sort all values
min(X) for all bags X, sort all values max(X) and use binary search to find whether a value
in a given range exist. Note that we should check every value x ∈ A, not only x = min(A) or
x = max(A).

6. Now, let’s call a bag special if we leave 1 object in it. Obviously, each special bag should be
promising. We know that the condition holds for each pair of two non-special bags. Also, the
condition holds and for each pair of special and non-special bag by the definition of promising.

7. Any pair of special bags can’t be good initially. If we leave only one value a ∈ A and only one
value b ∈ B, a < b and a > b can’t hold simultaneously.

8. This means that we should choose the largest subsequence of promising bags, such that each pair
of chosen bags is not good. If we denote each bag by its segment, we should find the largest
subsequence of non-intersecting segment. Such problem is well-known and can be solved greedily:
sort all segments by right end and choose a segment if it doesn’t intersect with the last chosen
segment.

9. If we have bags that contain 1 element initially, those will be promising and then chosen, so no
corner case required.

The complexity of the solution is O(m log n), where m is the total amount of objects.

8

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71134

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

G. Shrek’s Song of the Swamp

Author: Adrian Miclaus
Solved by: 63/72

First to solve: LNTU_IPZ_3

In this problem, we need to determine the longest subsequence with the property that it can be divided
into blocks of equal elements of length at least 2. The main observation is that such a subsequence can
be divided into blocks of equal elements of length 2 or 3. Thus, we can solve the problem by dynamic
programming. Let dp[i] be the length of the longest subsequence with the property mentioned above
in the prefix s1, s2, . . . , si. We start by initializing dp[0] = dp[1] = 0. Then, dp[i] can be computed
with the following recurrence:

dp[i] = max


dp[i− 1]

dp[i− x] + 1, x = max{j|j ∈ {1, 2, . . . , i− 1} and s[j] = s[i]}
dp[i− x− 1] + 2, x = max{j|j ∈ {1, 2, . . . , i− 1} and s[j] = s[i]}

To fill the array dp we need to iterate from 1 to n and keep the last occurrence of each element. This
can be done with an unordered_map/ map resulting in an algorithm of complexity O(n)/O(n log n).
The answer is dp[n].

9

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71135

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

H. Shreckless

Author: Anton Trygub
Solved by: 39/50

First to solve: RAF 100011

Consider two adjacent columns, assume in sorted order they are a1 ≤ a2 ≤ . . . ≤ an and b1 ≤
b2 ≤ . . . ≤ bn. For any permutation p, what’s the maximum number of indices i such that ai > bpi?
(Therefore making the corresponding row not sorted).

Let’s see how to check if we can get at least k such indices. It makes sense to pair k the largest
elements of a with k smallest elements of b. It’s also clear that we should be pairing them in increasing
order: (an−k+1, b1), . . . , (an, bk). Then we can get k pairs iff an−k+i > bi for all 1 ≤ i ≤ k.

Now, we can find the largest number of such pairs we can form with binary search over k. This would
work in O(n log n). We will denote this value by f(a, b). Denote the columns as a1, a2, . . . , am. Clearly,
we cannot make more than f(a1, a2) + f(a2, a3), . . . , f(am−1, am) unsorted rows. So, if f(a1, a2) +
f(a2, a3), . . . , f(am−1, am) < n, the answer is NO.

It turns out that if f(a1, a2) + f(a2, a3), . . . , f(am−1, am) ≥ n, we can make all rows not sorted!
Algorithm is very simple. Arrange elements of the 1-st column arbitrarily. Then, for i = 2, . . . ,m, do
the following:

Assume there are x sorted rows remaining (for i = 2 we have x = n). We assume x largest
elements of ai−1 are in precisely those columns (we will see why later). Now, arrange the elements of
ai as follows:

1. Put min(x, f(ai−1, ai)) smallest elements of column ai next to min(x, f(ai−1, ai)) largest ele-
ments of column ai−1, as discussed before, making those rows not sorted.

2. Put x−min(x, f(ai−1, ai)) largest elements of column ai in remaining sorted rows.

3. Put other elements arbitrarily.

This way, we will get min(n, f(a1, a2) + f(a2, a3), . . . , f(am−1, am)) unsorted rows.

Runtime: O(nm log n)).

10

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71136

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

I. Donkey, Keep Watch

Author: Pavle Martinović
Solved by: 0/0

First to solve: N/A

We split into two cases, whether |s| is even or odd.

Case 1: |s| is even. Let’s look at each bit independently. If the bit is set in any element of s,
we know it will exist in the OR. This bit will exist in the AND if it’s set in every element of S, and
since |s| is even, then it won’t be set in the XOR. So every bit set in the OR is set in at most one
of AND, XOR, so AND(s) + XOR(s) ≤ OR(s). The equality is attained only when each bit is set
everywhere, nowhere or in an odd number of elements (these are three distinct cases).

Let’s fix a ternary mask of size 14 (being the log of max a), containing 0,1 and ?. This mask
represents that we want to select some subsequence such that:

• if mask[i] = 1, then all elements of this subsequence have bit i set;

• if mask[i] = 0, then no elements of this subsequence have bit i set;

• if mask[i] =?, then an odd number of elements of this subsequence have bit i set.

We also have to ensure that the set is of even size. Let B be the multiset of elements of a that follow
the pattern made by the ternary mask. Now we just need to find the number of even subsets of B that
such that their xor is equal to one on the ? positions. If our mask has m positions with a ?, suppose we
look at every element in B as a vector in Fm+1

2 with entries corresponding to entries of those elements
in the ? positions, and also one 1 at the end to keep track of parity. We need to find the number
of subsets of these vectors summing to (1, 1, . . . , 1, 1, 0) (the ones at the first positions mean that the
XOR is 1 on the ? positions; the zero at the end means that there is an even number of elements).
By linear algebra (for example, the Rank-Nullity Theorem) we know that the number of such subsets
is either 0 or 2|B|−d, where d is the dimension of the subspace generated by the elements of B. The
way we can check whether the answer is 0 we need to find the basis generated by set B (by Gaussian
elimination), and simply check whether we can obtain it (by doing this we also find the value of d).
Once we check whether we can get it, we add 2|B|−d. If m = 0 we actually add 2|B|−d − 1 because we
don’t want to count the empty set.

Now the question becomes how do we find the basis for each mask? Doing this naively can be done
in O(n ·max ai ·15) or O(max a2i ·15), which are too slow. The trick is to iterate through all the masks,
and find the new basis through old ones. Let’s look at one ? of the mask. First we replace the ? with
a 0 then a 1, to get to new masks mask0 and mask1. Intuitively, it makes sense we can find the basis
for mask when we know the bases for mask0 and mask1. It can be tempting to do this by appending
a 0 to the beginning of every vector in the basis mask0 and a 1 to the beginning of every vector in the
basis mask1 and finding the basis of this set. This however won’t give us a correct basis, since the 1 we
appended at the beginning of the vectors for mask1 can become a 0 during Gaussian elimination. The
trick is that we actually know what this bit should be for each vector in the basis for mask1, because
we already know what happened to a bit appended to always be 1 in the Gaussian elimination for
mask1: it’s the last bit we added to track parity! So actually, we append 0 to the beginning of every
vector in the basis of mask0 and the last entry (parity entry) to the beginning of every vector in the
basis of mask1, and merge them using Gaussian elimination.

Case 2: |s| is odd. This is in some sense the harder case, but we will use a lot of the same ideas.
First to identify what the bits look like. Here it is more uncomfortable since if AND has some bit
set, then so does XOR. So for each bit set in OR, it can be set zero, one or two times on the left
side. Subtracting the right side of the equation from the left we get

∑
±2ik = 0, where all ik are

distinct, which is possible only if the sum is empty (because binary representation is unique). So the

11

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71138

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

only possible way is for each bit set in the OR to be set only in XOR i.e. each bit is either set nowhere
or set in some odd number of elements but not all of them.

Now suppose we take a mask like last time, but now consisting only of 0 and ?. Let B ⊂ A the
elements matching this pattern restricted to the ? positions again. We need the number of subsets
of odd subsets of B that xor to (1, 1, 1 . . . , 1, 1) and no bit is contained in all of them. This second
condition is impossible to model using linear algebra. Best we can do is find the total number of such
subsets (appending by 1 again to ensure its parity) and try to take away the sets which contain bits
that are set in every element.

The way we do this is the principle of inclusion-exclusion. Let’s again take our ternary masks like
in the previous case. We find the number of sets that have all zeros and ones on those positions, and
has an odd number of ones on all ? positions. Then we add (−1)(# of 1s) ∗ 2|B|−d to the solution if we
pass the check. Let’s see what happens to a set that doesn’t have any bit set to 1 everywhere. It’s
counted just once, for the mask with only ? and 0. If a set has exactly k bits which are 1 everywhere,
then it’s counted 2k times, but since we alternate signs, we actually count it

∑
(−1)t

(
k
t

)
= 0 times. So

we counted everything the correct amount of times.

We now may solve this case in parallel with the first case. Once we obtain the basis for some mask,
we check whether we can get (1, 1, . . . , 1, 0) and if needed we can add the adequate amount from the
first case to the solution, and then check whether we can get (1, 1, . . . , 1, 1) and if needed we add the
amount from the second case. The complexity of this solution is O(3k ·k2) where k = log2max ai (more
precisely O(n+max a1.58i log(max ai)

2)) with the only part actually having log squared being merging
bases). However, when calculating how many operations we actually need (summing the number of ?
squared for each mask) we get about 1.2 · 108, which runs very quickly, especially that we use the xor
operation in the Gaussian elimination for merging bases. The rest of the solution works in O(3k · k).

12

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

J. Make Swamp Great Again

Author: Petro Tarnavskyi
Solved by: 75/80

First to solve: 2Popici1Arici

Suppose we want to equalize the preferred temperature of all the swamp creatures to a target
temperature x (the initial temperature of some of the creatures).

Let cnt be the number of creatures whose preferred temperature is different from x. To change all
creatures’ temperatures to x, we need at least cnt evenings. This is because, in one evening, we can
change the temperature of at most one creature to x. Thus, each creature with a different temperature
requires its own evening to change.

If there are at least two neighboring creatures with the target temperature x, we can use them
to propagate x further. Specifically, for any neighbor of these two creatures, we can change their
temperature to x in one evening. Using this, we can iterate clockwise around the circle:

• If a creature already has temperature x, we skip it.

• If a creature has a different temperature, we spend one evening changing it to x.

Initially, there might not be two neighbors with the temperature x. However, if we can find any
group of three consecutive creatures where one creature’s temperature can be changed to x, we can
create two neighbors with x. After that, the propagation process is the same as mentioned above.

If there is no triplet where a creature’s temperature can be changed to x, it means we need at least
cnt + 1 evenings to change all temperatures to x. This extra evening is required to create a group of
three consecutive creatures where one creature’s temperature can be changed to x. Suppose we have a
triplet of consecutive creatures with temperatures x, y, z, where (without loss of generality) y ≤ x ≤ z.
In this case, we can change z to y. After this operation, we change y to x, creating two consecutive
creatures with the target temperature x, enabling the propagation process to continue as before.

Thus, to solve the problem, we only need to determine if at least one group of three consecutive
creatures where one creature’s temperature can be changed to x. This determines whether the answer
is cnt or cnt+ 1.

Runtime: O(n).

13

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71139

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

K. Intrusive Donkey

Author: Yarema Stiahar
Solved by: 32/41

First to solve: Infinity

Let a group be a sequence of identical characters that appear consecutively. Let’s gi be the size of
i-th group. The relative order of such groups does not change, only their sizes.

To process a query of the first type, we need to find the first and the last group that will be changed
by it. That process will be the same as a query of the second type. The first type of queries covers
some groups entirely and at most two groups partially. Groups which are covered entirely will double
in size. The group at both ends will increase in size by the number of their elements that are in range
of a query. These modifications can be done with segment tree.

The second type of query has to find the smallest index j such that
∑j

i=0 gi ≥ x. It can be done
with binary search or descent on Segment tree.

This problem can also be solved with Fenwick tree, as each group cannot double in size more than
O(logA) times. This means that we can modify each group size naively.

Complexity: O(n log n) with descent and Segment tree or O(n log n logA) with Fenwick tree.

14

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71140

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

L. Ogre Sort

Author: Roman Bilyi
Vlad Ulmeanu

Solved by: 37/52
First to solve: FMI-1

We denote a move by (i, j), i ̸= j. If we perform the same move k times, we note it by (i, j)k. Let
post represent the position at which we can find t in the permutation. We assume that we update pos
after every move that we do.

Property 1: An optimal sequence of moves never contains (i, j > i). A sequence of moves that
achieves the same result, while only utilizing the (i, j < i) kind of moves is (j, 1)j−i, (j − 1, 1)i−1, but
it only requires a cost of j − 1 < j.

Property 2: (i, j < i) can be replaced by a sequence of moves of the same cost of type (i, 1):
(i, 1), (j, 1)j−1.

Following the first two properties, there must exist an optimal sequence of moves only of the type
(i, 1).

Property 3: Let 0 ≤ t < n s.t. post ≮ post+1 < . . . < posn. If t = 0, the permutation is already
sorted. Since post ≮ post+1, the solution must contain at some time the move (post, 1).

Property 4: If the sequence contains a move (post, 1), then it must later contain (post−1, 1),
(post−2, 1), . . . (pos1, 1) as well, because after (post, 1) t will be in front of 1, 2, . . . t− 1.

Property 5: If the sequence contains a move (post, 1), then the sequence mustn’t later contain
(posz>t, 1), since t and z will be correctly ordered, and we can’t break the correct ordering by doing
any other moves required by property 4.

Using properties 3 and 4, the optimal sequence’s length must be at least t, containing (post, 1),
(post−1, 1), . . . (pos1, 1). Using property 5, we shouldn’t use any other moves. There is a sequence of
moves whose length is exactly t: (post, 1), (post−1, 1), . . . (pos1, 1) (using properties 4 and 5, we won’t
need to redo any moves if we employ this order).

We now have to figure out how to efficiently update pos.

Property 6: When we have to do (pos1≤z≤t, 1), posz will be higher than its original value by the
number of values z < y ≤ t that were originally to the right of z. We move them to the first position
earlier, therefore each increasing z’s position by one.

We need a data structure that supports point updates (i.e. we moved a value from index i to the
first position) and range sum queries (how many values that were originally after us were moved before
us to the front). A Binary Indexed Tree is enough for this.

Although we can sort the permutation with a cost of O(n), it’s not easy to find a solution that
generates the required moves faster than O(n log n).

15

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71141

Southeastern European Regional Programming Contest
Bucharest, Romania - Lviv, Ukraine

November 17, 2024

M. Enchanted Lawns Quest

Author: Roman Bilyi
Solved by: 1/11

First to solve: Infinity

Let’s make a binary search to find the answer. Now we need to check whether we can add weights
such that the diameter is ≤ x.

Let’s call the middle point of the diameter C. It means that the distance from point C to any
vertex is at most x/2. And the existence of such point also means that diameter is ≤ x – the distance
between vertices a and b dist(a, b) ≤ dist(a,C) + dist(b, C) ≤ x/2 + x/2 = x.

The point C should lie on an edge (considering vertices also lie on an edge). Let’s iterate an edge
(a, b) where the point C lies. Let len be the original length of this edge.

Property: We should only add weights to edges which connect edges to their corresponding
parents. If we add some positive amount to an edge not connecting a leaf, we can add the same value
to all edges connecting leaves in the subtree instead.

Now let’s find whether the point C can lie on an edge (a, b). Let’s call mxa – maximum distance
from vertex a to a leaf not using edge (a, b). Same for mxb. Firstly, mxa + len+mxb should hold.

Let 0 ≤ y ≤ len be a distance from point a to C. If x is even, y should be integer. Otherwise, y is
integer + 0.5 (we can multiply all distances by 2, then we have a condition whether y is even or odd).

The original distance from any leaf to C can’t be more than x/2, so mxa + y ≤ x/2 and mxb +
len− y ≤ x/2, so y ∈ [max(0,mxb + len− x/2),min(len, x/2−mxa)]. If there is no possible solution,
the edge (a, b) doesn’t work.

Now let’s count how much weight we can add for a fixed y and compare it with w. Let da1, da2, . . . , dak
be the distances from a to all leaves not using edge (a, b). Same for db1, db2, . . . , dbm. We can add∑k

i=1(x/2−y−dai)+
∑m

i=1(x/2−(len−y)−dbi) = (x/2−y)·k+(x/2−(len−y))·m−
∑k

i=1 dai−
∑m

i=1 dbi.
It’s clear that the function is linear on y so we can try minimal and maximal possible values of y.

Now, how to compute all of this fast. It’s enough to compute values mxa, cnta, suma, mxb, cntb,
sumb for each edge.

Let cnta be the number of leaves reachable from a not using edge (a, b).
Let suma be the sum of distances from a to all leaves not using edge (a, b).
Then the formula become (x/2− y) · cnta + (x/2− (len− y)) · cntb − suma − sumb.
Now we only need to find all of those values for each edge. This is quite standard tree problem.

We can compute all of those values for one edge and then recompute how the values change when we
want to compute them for incident edges. This can be implemented in O(n).

The complexity of the whole solution is O(n · logmaxAnswer).

16

https://algotester.com/uk/ArchiveProblem/DisplayWithEditor/71142

