
All-Ukrainian Collegiate Programming Contest II stage
,

All-Ukrainian Collegiate Programming Contest
2022

II stage
Editorial

Thanks for participation!

Page 1 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem A. Adjacent Product Sum
Let a1 ≥ a2 ≥ . . . ≥ an. Then, we can show that one of the optimal ways to arrange them on the circle
is: a1, a3, . . . , a2bn−1

2
c+1, a2bn2 c, . . . , a4, a2. In other words, first put all elements on odd positions, then all

on even positions, in a different order.

For example, for n = 7, this would look as: (a1, a3, a5, a7, a6, a4, a2).

Let’s show that it’s optimal. We will use a simple fact: if a ≥ b, c ≥ d, then ac+ bd ≥ ad+ bc (as this is
equivalent to (a− b)(c− d) ≥ 0).

Let’s show by induction that for each k there exists an optimal arrangement (optimal = with the largest
possible sum of adjacent products) in which elements a1, a2, . . . , ak form a consecutive segment, and
numbers ak−1 and ak are at the ends of this segment. To show this for k = 2, suppose that a1 and a2
aren’t adjacent. Let the element directly clockwise to a1 be ax, and directly clockwise to a2 be ay. Then,
let’s reverse entire subsegment from ax to a2 (considered clockwise). The sum of products will change by
a1a2 + axay − a1ax − a2ay ≥ 0.

Now that we proved our statement for k = 2, let’s make the induction step: consider an optimal
arrangement in which this holds for k − 1. Wlog, in this segment ak−2 is the first element, and ak−1
the last clockwise (that is, if we traverse this segment clockwise, ak−2 is the first element we see, and ak−1
the last one.

Suppose that ak isn’t adjacent to ak−2. Then, let ax be the element next counterclockwise to ak−2 (by
choice x > k), and ay be the next element counterclockwise to ak (by choice x ≥ k−1). Then, let’s reverse
the (clockwise) segment from ak to ax. The sum will change by akak−2 + axay − ak−2ax − akay, which is
nonnegative as ak−2 ≥ ay and ak ≥ ax.

So, just sort the elements, arrange them in this order, and find the sum of products.

Page 2 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem B. Best Chess Piece
Let’s find the smallest number of moves a prawn has to make to get from cell (a, b) to cell (c, d).

Let’s also consider the chess coloring of the grid (that is, color cells (a, b) with a+ b even white and with
a + b odd black). Then, if prawn moves diagonally, the color of its cell doesn’t change, and if it moves
forward by one, the color of its cell changes.

First, prawn has to make at least max(|a − c|, |b − d|) moves, as in one move prawn can only decrease
|a− c| and |b− d| by at most 1. Second, if cells (a, b) and (c, d) have the same color, then this is always
achievable. Indeed, let max(|a− c|, |b− d|) = t. At i-th move, just make a diagonal move so that for new
cell (a1, b1) (to which prawn gets after this move) holds max(|a1 − c|, |b1 − d|) ≤ t− i.

What if cells (a, b) and (c, d) have different colors? Then we would have to move forward at least once. As
the order of moves doesn’t matter, we might as well make it our first move. Then our goal would be to get
from the cell (a, b+1) to the cell (c, d) as fast as possible. But as we know, this takes max(|a−c|, |b+1−d|)
(as cells (a, b+ 1) and (c, d) have the same color).

So:

• If cells (a, b) and (c, d) have the same color, answer is max(|a− c|, |b− d|)

• Otherwise, it is 1 +max(|a− c|, |b+ 1− d|)

Page 3 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem C. Cyclic Segment Sums
Let’s try to see how arrays a with the same f(a) look. Consider all arrays a for which f(a) = b. What do
we know about them?

First, we know ai+k−ai = bi+1− bi. Consider elements ai, ai+k, ai+2k, . . . , ai−k, ai (add k until we meet ai
again for the first time). What’s the length of this cycle? It’s n

gcd(n,k) , where gcd(n, k) denotes the greatest
common divisor of n and k.

Let’s denote the set of indexes for which ai is in this cycle by S. If at least for one i ∈ S, bi+1 − bi 6= 0,
then we can uniquely determine the values of all ai for i ∈ S (as aj−ai can only be 1 when aj = 1, ai = 0,
and can only be −1 when aj = 0, ai = 1). If all these bi are equal, then all ai are also equal, but here we
have two choices: to make all of them equal to 0 or to 1.

Now, suppose that there are t cycles, in which all ai have to be equal. If we choose x of these cycles to
have all ones, and the rest to have all zeros, then the sum on each subsegment of length k increases by
x k
gcd(n,k) (each cycle intersects with each segment of length k by exactly k

gcd(n,k) cells). So, for a given a,
all arrays a1 with f(a1) = f(a) look as follows:

• Consider all gcd(n, k) cycles (ai, ai+k, ai+2k, . . .) for each i from 1 to gcd(n, k).

• For each of these cycles: if not all ai in it are equal, then in all arrays a1 with f(a1) = f(a), these
a1i will be the same as in a.

• If there are t cycles in which all ai are equal, and x of them consist of all ones, then in a1 in these
cycles, all elements are also equal, and exactly x of them consist of all ones.

Now, let’s count the number of different equivalent classes. Let l = gcd(n, k). Suppose that t of these
cycles have all equal elements. Then there are

(
l
t

)
ways to choose these cycles, and 2

n
l −2 ways to fill each

other cycle. As for t cycles with equal elements, we only care how many of those cycles are all ones, and
there are t+ 1 possibilities. So, we have to find

t=l∑
t=0

(t+ 1)

(
l

t

)
(2

n
l − 2)l−t

Denote 2
n
l − 2 = a. Note that t

(
l
t

)
= l!

(l−t)!(t−1)! = l
(
l−1
t−1
)
. Now, rewrite:

t=l∑
t=0

(t+ 1)

(
l

t

)
al−t =

t=l∑
t=0

(
l

t

)
al−t + l

t=l∑
t=1

(
l − 1

t− 1

)
al−t−1 = (a+ 1)l + l(a+ 1)l−1

(Here we just used that (x+ 1)k =
∑k

t=0 x
t
(
k
t

)
)

So, we can solve each case in O(log) with simple binary exponentiation.

Page 4 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem D. Different XOR
Let X be the XOR of all the elements. If X 6= 0, we can split into two parts arbitrarily, and their XORs
will be different.

If X = 0, then let’s try to split the array into 3 parts and see when it’s impossible. Let ax be the first
nonzero element of the array (if all elements are 0, clearly there is no solution). Let the first subarray be
a[1 : x]. We want to split the rest into two parts so that XOR in both isn’t 0 or ax (the XORs of those
parts can’t be equal, as then the XOR of the entire array would be ax, not 0).

So, if there is no such split, then for any y with x+ 1 ≤ y ≤ n, XOR on subarray a[x+ 1 : y] is 0 or ax.
However, this means that each element there is 0 or ax. So, all elements of the array are 0 or ax. But in
this case, XOR of any subarray is always 0 or ax, so there can’t be any such split.

So, the solution is: if X 6= 0, split arbitrarily. If X = 0, find the first nonzero element ax, take subarray
a[1 : x], and try all ways to split the rest into two parts. If you haven’t succeeded, there is no solution.

Page 5 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem E. Equalize
First, we can always make an array good in at most 2 operations. Indeed, first, append 0. The product
becomes 0. Then, append the number equal to the minus sum of elements of the array, so that both
product and sum are 0.

Now, we have to check if the answer can be 0 or 1. To check if it’s 0, we have to check if
a1 · a2 · . . . · an = a1 + a2 . . . + an. Find the sum directly, and for the product, to avoid overflow, do
the following: if it’s above INF by absolute value, just set it to INF (where you can set INF to be, for
example, 1012, as sum won’t ever exceed 106n < 1012 by absolute value).

Now let’s check if we can make an array good in 1 operation. Let the current sum be S, the current
product be P . We have to check if there exists some integer x such that S + x = Px ⇐⇒ x(P − 1) = S.

Now, we have several cases.

• If P = 1, then such x exists if S = 0 and doesn’t if S 6= 0

• If P 6= 1, then such x exists only if S is divisible by P − 1. If S = 0, it’s always divisible. Otherwise,
note that if |P | ≥ INF , S can’t be divisible by P − 1. So, in this case, check if P is not INF , and
if so, check that S is divisible by P − 1.

Page 6 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem F. Form ABC
Clearly, there is no point in swapping adjacent equal characters. So, the relative order of As doesn’t change,
and the relative order of Cs doesn’t change.

The condition that string s contains ABC as a subsequence can be rephrased as follows:

• Let L be the first position with sL = A, and R be the last position with sR = C. Then, check if
L < R and there is at least one B between positions L and R.

Then, let L be the first position with sL = A, and R be the last position with sR = C. Consider two cases.

• L < R. Then, if there is at least one B between sL and sR, the answer is 0. Otherwise, consider any
X with sX = B. What’s the smallest number of swaps needed to move this character between sL
and sR?

If X < L, then L−X. If X > R, then X −R.

So, just find the minimum value of this over all X with sX = B.

• L > R. Consider any X with sX = B. What’s the smallest number of swaps needed to put sX
between sL and sR?

There are 3 cases:

– X < R =⇒ we need L−X swaps.

– X > L =⇒ we need X −R swaps.

– R < X < L =⇒ we need L−R+ 1 swaps.

Iterate through all such X, choose the smallest value.

Page 7 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem G. Graph and Hamiltonian Cycles
First, let’s get some trivial bounds on the length of the shortest cycle. Take any position i (1 ≤ i ≤ 2n−1).
Let the numbers of W, B in s[1 : i] be leftW , leftB correspondingly.

Consider any Hamiltonian cycle. Suppose that it contains x edges connecting node from {1, 2, . . . , i} to
{i+1, i+2, . . . , 2n}. The degree of each node in Hamiltonian cycle is 2, so the number of edges connecting
nodes from {1, 2, . . . , i} is 2i−x

2 . So, x has to be even. Also, note that the number of edges connecting
nodes from {1, 2, . . . , i} can’t exceed 2min(leftW , leftB). So,

2i− x

2
≤ 2min(leftW , leftB) =⇒ x ≥ 2(leftW + leftB)− 4min(leftW , leftB) = 2|leftW − leftB|

Also, of course, x 6= 0, as otherwise graph wouldn’t be connected. So, x ≥ 2max(1, |leftW − leftB|).
It turns out that these bounds are all achievable, so if we just wanted to learn the length of the shortest,
we could just find all these bounds over each position i and sum them up. (Proof that these bounds are
achievable will follow from what’s written below).

But we are interested in the number of such cycles. For that, let’s analyze the structure of cycles in which
all of these bounds hold. Again, choose some i and define leftW , leftB as before.

It’s easy to see that:

• If leftW > leftB, then the graph on {1, 2, . . . , i} consists of leftW − leftB paths of form
WBWBW . . . BW .

• If leftB > leftW , then the graph on {1, 2, . . . , i} consists of leftB − leftW paths of form
BWBWB . . .WB.

• If leftB = leftW , then the graph on {1, 2, . . . , i} consists of a single path WBWB . . .WB.

It’s easy to see that if this holds for every i, then all bounds on the numbers of edges which connect a
node from {1, 2, . . . , i} to {i+ 1, i+ 2, . . . , 2n} will match exactly.

Now, let dpi denote the number of ways to connect edges on the first i nodes so that all first i conditions
hold. How do we update this dp?

Assume now leftW > leftB+1. If the next character is W, then we have to add a path from a single node.
If the next character is B, then we have to reduce the number of paths by 1, by connecting B to the ends
of some two paths. But here we run into a problem: it matters if the path has a length larger than 1 or
not, as in that case, it has two "distinct"ends or not. To solve this issue, let’s modify our problem a bit.

Let’s find the number of oriented Hamiltonian cycles. Then we could divide this number by 2 and obtain
the answer to the initial problem. All the conditions remain the same, just paths become oriented.

Now, making a transition is easy! As now, when we are processing B in the case above, we
don’t have to choose 2 ends; we have to choose a right end and a left end. There are precisely
(leftW − leftB) · (leftW − leftB − 1) to do so.

Now updating the dp is easy; you are just dealing with some cases. Briefly:

• leftW > leftB. If next character is W, dpi+1 = dpi. If next character is B, then, if leftW > leftB+1,
dpi+1 = dpi(leftW − leftB) · (leftW − leftB − 1). If leftW = leftB +1, dpi+1 = 2dpi (there are two
ways to prolong the chain).

• leftB > leftW is symmetric.

• leftW = leftB. Wlog next character is W. Then we have to connect this W to the only black end of
the previous chain, so dpi+1 = dpi.

We can calculate this in O(n).

Page 8 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem H. Hating 3-Colorability
We will show that the answer is always 2 or 3. Let’s initially color nodes of the first part (from 1 to n) in
color 1 and the remaining in color 2.

It’s clear that if we don’t add any edges, the graph remains 2-colorable (and therefore 3-colorable).

If we add one edge (u, v), then just color node v in color 3, coloring will remain proper.

Now, suppose that we added two edges, and the graph is no longer 3-colorable. Let’s consider some cases.
Suppose that one of these two edges connects two nodes from different parts. Then, if the other edge is
(u, v), we can just color node v in color 3, and the coloring will remain proper. So, we have to add edges,
which connect nodes from the same part.

Let these edges be (u1, v1) and (u2, v2). If these edges share a node, say, u1 = u2, then we can just
color node u1 in color 3, and the coloring will be proper. Otherwise, let’s try coloring some endpoint
of each of these two edges in color 3. If we can’t get proper coloring this way, it means that all of the
edges (u1, u2), (u1, v2), (v1, u2), (v1, v2) are present in this graph. And indeed, if such a cycle of length 4 is
present in the graph, we can add edges (u1, v1) and (u2, v2), obtaining a subgraph on 4 nodes u1, v1, u2, v2,
in which each pair of nodes is connected, and which, therefore, isn’t 3-colorable.

Even if there is no 4-cycle, we can always add at most 3 edges to make the graph not 3-colorable. It’s
enough to show that we can choose 2 nodes u1, v1 from the first part, and nodes u2, v2 from the second
part, such that at least 3 edges among edges (u1, u2), (u1, v2), (v1, u2), (v1, v2) are present in this graph
(then we can add all remaining edges to obtain a complete graph on 4 nodes). Suppose that it doesn’t
exist. Then there is no edge (u, v) with u in the first part, v in the second, such that there is at least one
more edge from u and at least one more edge from v. Then for any edge (u, v), at least one of u, v is a leaf.
Then consider any non-leaf node u, it can be connected only to leaves, so u together with these leaves
forms a separate connected component, and the graph is not connected. This contradicts the problem
statement (graph is told to be connected).

So, answer is 2 if there is a 4-cycle u1, v2, v1, u2, and 3 otherwise. How to check if there is a 4-cycle?

Here is an algorithm that, for a given node, checks if it’s in some 4-cycle in O(n), giving total runtime
of O(n2). Consider node v, and it’s neighbors u1, u2, . . . , uk. v is contained in a 4-cycle iff there is a node
v1 6= v, which is connected to at least two nodes among u1, u2, . . . , uk.

Then, just start going through all neighbors of nodes u1, u2, . . . , uk, marking nodes which we meet (except
v). If we have to mark some node twice, we found a 4-cycle. This takes O(n) per node.

Page 9 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem I. Increasing Split Swapper
Let’s call positions pos for which ppos < pos small, and positions with ppos ≥ pos big.

We will show the following statement:

Lemma: Permutation can be split into two increasing subsequences iff elements on small positions form
an increasing subsequence, and elements on big positions form an increasing subsequence.

Proof: If both these subsequences are increasing, we found the required split. Let’s show that if a
permutation is splittable, then these subsequences are increasing.

First, note that splittable permutation can’t contain any decreasing subsequence of length 3, as no two
of such 3 elements can be in the same increasing subsequence.

Now, suppose that the sequence on elements on small positions is not increasing. Then, there exist some
x, y with x < y, px < x, py < y, px > py. Consider first x elements, there has to be some element ≥ x
there. This element, together with px and py forms a decreasing subsequence of length 3.

Now, suppose that the sequence on elements on small positions is not increasing. Then, there exist some
x, y with x < y, px ≥ x, py ≥ y, px > py. Consider last n − y + 1 elements. px > py ≥ y, so there are
at most n − y elements which are ≥ y there. Then px, py, and the last element smaller than y form a
decreasing subsequence of length 3.

Now that the lemma is proved, to solve the problem, we just have to be able to support these sequences
of elements on small/big positions and to answer if they are increasing.

Let’s keep a set of all small positions and a set of all large positions. For each set, we will keep the number
of such x, that px > pnxt(x), where nxt(x) is the smallest element of that set larger than x. The swap
implies O(1) inserts/deletions, and each insertion/deletion takes O(log) to process.

Total complexity O((n+ q) log n).

Page 10 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem J. Joke
Let x be the largest value in the array a, then x satisfies all conditions from the statement. It indeed
appears in a, and for any i, j, 1− x ≤ ai − aj ≤ x− 1, so |ai − aj | ≤ x− 1.

Page 11 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem K. Knowledgeable Andrii
Let’s add an edge between each i, j, the distance between which is odd. Let’s show that if there is any
graph for which the distances match, this graph also has to work.

For any i, j between which the distance is odd, the parity will match. For any i, j between which the
distance is even, say, 2t, there is a node k on the shortest path between them, for which d(k, i) = 1,
d(k, j) = 2t− 1. Therefore, we drew edges (k, i) and (k, j), and the distance between i, j in our graph is
2, so the parities also match.

So, we should just add all these edges, and check if the graph is connected and all parities match. O(n3)
with Floyd-Warshall.

Page 12 of 13

All-Ukrainian Collegiate Programming Contest II stage
,

Problem L. Least Annoying Constructive Problem
Odd n. Let n = 2k + 1.

We will imagine these nodes on a circle, numbered from 1 to n, and use the cyclic notation of nodes; that
is, node n+ i is the same as node i for any i.

Consider the following construction. For each i from 1 to n, output the following k edges:
(i, i+ 1), (i− 1, i+ 2), (i− 2, i+ 3), . . . , (i− k + 1, i+ k). On the circle, view these as k edges parallel to
edge (i, i+ 1). Let’s call such k edges for a given i block i.

Let’s show that this works. Consider any n− 1 = 2k consecutive edges. Such 2k edges completely contain
some block, wlog block 2, and contain some suffix of block 1, let’s say of length x, and some prefix of
block 3 of length k − x.

After we drew block 2, we have k + 1 components remaining: k edges and a single node 3 + k. The idea
is that the i-th edge of block 1 connects i-th and i+ 1-st of these components, the same for i-th edge of
block 3. Then it’s easy to see that the suffix of block 1 of length x connects the last x + 1 components
into a single component, and the prefix of block 3 of length k − x connects this resulting component and
the first k − x components.

Even n. Let n = 2k + 2. Let’s once again draw 2k + 1 nodes on a circle, and let the center of this circle
be point 2k+ 2. We will once again number the points on the circle cyclically mod 2k+ 1 (note that this
doesn’t apply to the center node 2k + 2).

Then, let the "block i"consist of the following k edges for each i from 1 to 2k + 1:
(i, i + 1), (i − 1, i + 2), (i − 2, i + 3), . . . , (i − k + 1, i + k), and the edge (i + k + 1, 2k + 2). You can
visualize this as: draw k edges parallel to (i, i + 1), and the edge from the center to the last remaining
point. Then, write down edges of these blocks for each i from 1 to 2k + 1, in this order.

The proof that this works is the same as in the odd case.

Page 13 of 13

