
Southeastern European Regional Programming Contest 2021
November 21, 2021

Problem A. King of String Comparison

Author: Utkarsh Gupta
Solved by: 112/118

First to solve: UBB_Zalau00

Note that to compare two strings, we just have to know the first position where they differ, and which
string at that position has a larger character.

Let’s go from right to left, keeping the last met position where s and t are different — last, and a boolean
variable less, which is true if s[last] < t[last] and false otherwise. Initially there is no such position, so
set last to some undefined position (for example, −1).
When we are at position l, we update last, less if s[l] 6= t[l] first. After that, if last is defined and less
is true, we add n + 1 − last to the answer: for all pairs (l, r) with r ≥ last, slsl+1sl+2 . . . sr will be
lexicographically smaller than tltl+1tl+2 . . . tr, and for smaller r they will be equal.

Total complexity is O(n).

Problem B. New Queries On Segment Deluxe

Author: Alex Danilyuk
Solved by: 3/5

First to solve: KNU_Duplee

The problem quite clearly asks to implement a persistent segment tree with lazy propagation, except that
the operations are a bit weird. For a segment tree to work, you need to merge answers from sons (no
problem, just take minimum) and quickly change the answer for a vertex when applying the operation on
the whole segment. And while it is not an issue for +=, for := the answer can change quite unpredictably:
you need to kinda forget about this row in a matrix and take minimum if we sum all the rows except this
one...

After some considerations, it should be clear that we need to expand what is “the answer”: we want to
store the minimum not only for the sum of all rows but also for all subsets of rows. The details of the
implementation are left as an exercise :)

Time and memory complexities are O((n+ q log n)2k).

Problem C. Werewolves
Author: Andrei Constantinescu

Solved by: 12/19
First to solve: KhNURE_Energy is not over

The majority color, if it exists, is unique, because otherwise, the total number of nodes with one of the
majority colors would be greater than the total number of nodes in the subtree. Let’s iterate through the
n possible colors and calculate the number of subtrees with this color being a majority color.

Given a fixed candidate majority color, for all vertices set sv = +1 if it is of this color, and sv = −1
otherwise. The problem is now to find the number of subtrees whose sum of s values is strictly positive.
This can be done with a standard dp[v][sum], meaning the number of subtrees of T restricted to the
subtree of v which contain node v and have their sum of s values equal to sum. It seems like this works
in O(n4), but let’s look at it more closely.

Let’s say that the number of nodes with color c is kc. Then, when we calculate the dp for this color,
sum ≤ kc. Additionally, note that we only care about states with sum > −kc, because we won’t be able

1

Southeastern European Regional Programming Contest 2021
November 21, 2021

to reach a positive sum from smaller values. Also |sum| ≤ szv, where szv is the size of the subtree of
node v. Thus, we can only calculate dp for |sum| ≤ min(szv, kc). It is well-known that such dp works in
O(n · kc). Therefore, the total time complexity is

∑
cO(n · kc) = O (n ·

∑
c kc) = O(n2).

Problem D. Many LCS

Author: Anton Trygub and Alex Danilyuk
Solved by: 0/0

First to solve: -

As the problem is purely constructive and there are a lot of possible directions, we would not be surprised
if there are solutions that are different from our solution in every regard. Having said that, we are not
aware of any such solutions. There is no logical reasoning behind the general construction, we just tried
a lot of things and stumbled on the one that works, although at least three people came up with this
construction independently, so it doesn’t seem like pure luck. Let’s jump into the general construction.

S = 0k1 01 0k2 01 . . . 0kt 01,

T = (01)(n+t),

where n, t, k1, k2, . . . , kt — some non-negative integers (there might be more concise constructions with
the same idea, I personally find this one the clearest). We will also require k1 + k2 + . . .+ kt ≥ n.

I state that it is possible to take all 1 from S and all 0 from T , which means that length of
LCS(S, T) = n + 2t, and the only possibility to reach this is to be of the form 0a1 01 0a2 01 . . . 0at 01,
where 0 ≤ ai ≤ ki,

∑t
i=1 ai = n.

Now we want to choose n, t, k1, k2, . . . , kt such that the number of ways to choose a1, a2, . . . , at is exactly
K.

Let’s first understand what is the number of ways to choose a1, a2, . . . , at for the given n, t, k1, k2, . . . , kt.
It is a standard combinatorics problem:

If there were no limitations ai ≤ ki, the answer would be equal to
(
n+t−1
t−1

)
. Let’s now apply inclusion-

exclusion principle, fix the set I of ai > ki (that is, the condition ai ≤ ki is violated). The answer will be
equal to

∑
I∈2[1..t](−1)|I|

(n−∑i∈I(ki+1)+t−1
t−1

)
.

This doesn’t look good, because we can control only t + 2 parameters, while the number of summands
is 2t. Let’s make most of them be equal to zeroes! Let’s choose ki close to n, more formally, we want
ki + kj ≥ n, so that we can’t violate two or more conditions at once. This way the answer will be(
n+t−1
t−1

)
−
∑t

i=1

(
n−ki−1+t−1

t−1
)
.

With the answer in this form the idea for the construction is clear: fix t, choose some n such that(
n+t−1
t−1

)
≥ K, represent

(
n+t−1
t−1

)
−K as the sum of t binomial coefficients.

With t = 3 we are dealing with triangular numbers, and there is actually a theorem that states that every
number is representable by a sum of at most three triangular numbers. Unfortunately, t = 3 means that
we will need n ≈

√
2K to get big enough value, and we can’t afford that.

t = 4 would resolve this issue, we will be good with n ≈ 3
√
6K. Now we are dealing with tetrahedral

numbers and... they are good enough. There is an unproven conjecture that says that every number is
representable by a sum of at most five tetrahedral numbers. Fortunately for us, this conjecture is checked
for all numbers up to 1010, moreover, there are only 241 (known) numbers that actually require five
summands, the largest being 343 867. In case we are unfortunate to encounter such a test, we can just
choose a larger n.

The (almost) last issue is that we are not satisfied with just knowing that the representation in a
form of such sum exists, we actually need to construct one. The largest value of n we might want to
use is less than 1850, which means the numbers we want to represent in this form are bounded by

2

Southeastern European Regional Programming Contest 2021
November 21, 2021

(
1850
2

)
+343 867 < 2 100 000. Thus we can use only the first 240 tetrahedral numbers (as

(
240
3

)
> 2 100 000).

We can implement DP in 240 · 2 100 000 to construct the representation, and if for some reason it is slow,
use bitsets to speed it up.

The actual last issue is that we have to ensure that ki+kj ≥ n actually holds. It will be true automatically
for large values of K, because

(
n−ki−1+t−1

t−1
)
≤ 2

(
n+t−1
t−2

)
, and that means that for large enough n

n − ki < n/2. You might need to use some simpler approach for small values of K, for example, the
solution above with t = 2 or t = 3 (t = 2 should be enough).

Problem E. Replace Sort

Author: Daniel Posdarascu
Solved by: 12/20

First to solve: LNU Bulldogs

Solution 1:

Sort elements in B because the order does not matter.

O(N2) solution:

dpA[i] = the minimum cost in order to solve the first i elements in A and the element on position i is
A[i] (the initial value) dpB[i][j] = the minimum cost in order to solve the first i elements in A and the
element on position i is B[j] (it was replaced)

For dpA[i] we have two cases:

1. The previous element has also kept his initial value. This can be applied only if A[i− 1] < A[i].

2. The previous element was replaced with something from B, so any B[j] < A[i].

Therefore, dpA[i] = min(dpA[i− 1] (if it’s the case), dpB[i][j]) for all j with B[j] < A[i]. This can easily
be done with partial min.

For dpB[i][j] we have two cases:

1. The previous element kept its initial value. This can be applied only if A[i− 1] < B[j].

2. The previous element was also replaced by another element in B. The key observation is that if
position i in A was replaced by element j in B, then position i− 1 will be replaced by element j− 1
in B (or there is no reason to take any other element from B).

Therefore, dpB[i][j] = min(dpA[i− 1] + 1 (if it’s the case), dp[i− 1][j − 1] + 1).

O(N · logN) optimization:

We will iterate only through the first dimension (iterate only i) and we will update all the values of
dpB[i][j] using a data structure. We can see that we only need minimum on prefix, update with minimum
on suffix and update +1 on elements. This can be done using lazy update on a segment tree for example.

Solution 2:

We want to replace as few elements of A as possible, which is the same as not touching as many elements
of A as possible. Let’s mentally fix the elements of A we won’t touch, can we achieve that? Obviously, the
untouched elements should be increasing left-to-right, but also we should have enough elements in B to
fill in the gaps. The good news is since the untouched elements are increasing, the elements of B we can
use to fill in the gaps are different for each gap, so we can check if we can fill in each gap independently.

That leads to a polynomial solution: we don’t need to choose all the elements we won’t touch, we can
choose them one-by-one left-to-right, each time checking that we have enough elements in B to fill in
the gap. Do DP[v] — maximum number of untouched elements if the last one is on position v. To make
a transition, iterate over the next untouched element u, check that Av < Au and that we have at least

3

Southeastern European Regional Programming Contest 2021
November 21, 2021

(u − v − 1) elements in B between Av and Au. The obvious implementation is O(N2M), we need to do
better than that. (For convenience, add elements A0 = −∞ and AN+1 =∞, so that we can always take
them)

Can we do the transition faster? Well, yes, we only need to check if the number of elements in B is enough,
we can do that with a couple of lower_bounds if we sort B in advance. Moreover, we can right away define
pv — position of first element in B which is greater than Av, then the transition is possible if and only if
Av < Au and u− v − 1 ≤ pu − pv. Unless u = v + 1, which we can check separately, the second condition
implies the first, so we only need to check the second one. We can rewrite it as pv − v − 1 ≤ pu − u,
which is good, because the left side depends only on v and the right side depends only on u. Therefore,
to calculate DP[u], we only need to take maximum over DP[v] for v with pv − v less than some value.

It can be done with Segment Tree, but there is a way that requires only std::set. Smaller values of pv − v
are better — higher chances to be less than some value. Therefore, if there are two states v and u with
pv − v ≤ pu − u and DP [v] ≥ DP [u], we don’t need u, we can just forget about it. So, if we only store
the values which are useful, a higher value of pv − v will mean a higher value of DP [v]. Let’s store the
pairs (pv − v,DP [v]) in std::set, they will be sorted by the first parameter, which also means sorted by
the second. When we insert the new value, erase all the old ones that are worse. To calculate the new DP
value you only need one lower_bound. Since we can insert each element at most once, we can erase it at
most once, thus the amortized complexity is O(N logN).

Accounting for the sorting of B and lower_bounds needed to calculate pv, total complexity is
O((N +M)(logN + logM)).

Problem F. to Pay Respects

Author: Daniel Posdarascu
Solved by: 77/99

First to solve: KhNU_OtVinta

Observations:

If we decide to cast a spell that will only add a poison stack on the enemy, do it as soon as possible. If
we cast spells in X such cases, it will be on the first X moments that do not have a regeneration.

If we decide to cast a spell that will both add a poison stack and remove a regeneration one , again, do
it as soon as possible when the regeneration is added. If we cast spells in Y such cases, it will be on the
first Y moments that have a regeneration.

Obviously, we do prefer to cast a spell in case 2 such that we will eliminate a regeneration while we add a
poison, but some of those regenerations may be placed too late in the timeline, so it might not be optimal.
In conclusion, the spells that we cast form a prefix in the timeline (first Z spells at moments from 1 to
Z), plus some spells added at moments where regenerations are added.

Solution 1: compute for each moment x from 1 to N the cost of improvement if you cast a spell at that
time. If the moment has no regeneration spell added, then the cost of improvement is (N − x + 1) · P
because you only add a poison stack. If the moment does have a regeneration spell added at that time,
the cost of improvement is (N − x + 1) · (P + R) because you add a poison stack and also remove a
regeneration one. Sort those N options and select the best K.

Solution 2: initially consider the full prefix of K spells dealt at moments from 1 to K and then always
take the last spell in case 1 and see if it’s better to change it with the first spell from case 2. This solution
works in time proportional to the number of regeneration spells which is bounded by O(N). This solution
works for even higher constraints.

Problem G. Max Pair Matching

4

Southeastern European Regional Programming Contest 2021
November 21, 2021

Author: Anton Trygub
Solved by: 52/79

First to solve: KhNURE_Energy is not over

Solution 1. Let’s assume that ai ≤ bi in each pair.

Clearly, from each of the 2n pairs, we have to choose one number, with a plus or minus sign, so that
exactly n numbers are chosen with a plus and exactly n with a minus, and we have to maximize the sum
of these chosen numbers (with corresponding signs). That means, we have to choose n pairs from which
we will choose bi, and n pairs from which we will choose −ai.
Now, let’s consider S =

∑2n
i=1 bi. Each pair from which we choose −ai instead of bi, decreases this sum by

ai + bi. So, it’s optimal to choose −ai from the n pairs with the smallest sum ai + bi.

The overall algorithm would be to first make sure that ai ≤ bi, to sort by ai + bi, and take −ai from the
first n pairs, and bi from the last n.

Solution 2. Let’s draw a point ci = ai+bi
2 for each pair. Then wij =

|ai−bi|
2 +

|aj−bj |
2 + |ci − cj |.

Then we just have to find the partition into pairs for which the sum of |ci − cj | over pairs (i, j) is the
largest possible, and this is a well-known problem: just put match largest n points with smallest n points.

Problem H. Colourful Permutation Sorting

Author: Alex Danilyuk
Solved by: 1/3

First to solve: KNU_0_GB_RAM

Let’s show that it only makes sense to do shuffle for each colour at most once. Let’s say that elements of
permutation are written on cards, and those cards lie in numbered boxes, each box has the colour of the
corresponding position. When we swap two elements, we will swap the cards and record the ids of boxes
they were in. When we do the shuffle for a specific colour, we will shuffle the boxes themselves. In such
an interpretation swaps and shuffles are totally independent, thus we can do all the swaps first, and then
all the shuffles, now it’s obvious that we don’t need to shuffle the same colour twice.

If we don’t use shuffles, we have to make (n − cyc) swaps, where cyc is the number of cycles in the
permutation. When we shuffle the colour, we basically say that all the positions of this colour are the
same. In terms of the graph, we merge all the vertices of this colour.

Let’s try all 2k ways to choose which colours we will shuffle. Construct the graph of the permutation,
merge the vertices of the chosen colours. The cost will be [cost for shuffles] +S(n− cyc), where cyc
is the maximum number of cycles we can split the edges of the graphs into. We can contract the vertices
with indegree = outdegree = 1, so we will only have the mega-vertices corresponding to chosen colours.

Thus we have reduced our problem to the problem “Given a directed graph with at most 5 vertices and
at most n edges, for each vertex indegree = outdegree, what is the maximum number of the cycles we
can split the edges into?” We are aware of 2 working methods for this problem:

Common observations:

We can remove cycles one by one, the property indegree = outdegree will remain. But the order of
removal can be important.

It is always optimal to take cycles of length 1. It is also always optimal to take cycles of length 2. Suppose
the opposite, then in optimal solution they are in different cycles. Let’s take these 2 edges out, make a
cycle out of them, and also make a cycle out of two remaining chains. It is also 2 cycles, so it’s not worse.

From here we assume that we don’t have self-loops and edges in the opposite directions (if they appear
during the algorithm, we remove them).

5

Southeastern European Regional Programming Contest 2021
November 21, 2021

Method 1.

If there is a vertex from which there are edges to only one other vertex then all the cycles coming through
this vertex will have to go through that edge, so we can contract this vertex, by glueing incoming edges
with the only outcoming.

If we have at most k = 4 vertices in the graph, we can always find such a vertex, thus we have a O(k3)
solution.

For k = 5 vertices it is possible that each vertex has 2 incoming and 2 outcoming edges. Here we can
remember that the total number of edges is at most n, and for one edge we can bruteforce all the
possibilities where cycles that go through it will go next. Then we can remove this edge and finish as
before, as now there will always be a vertex we can contract.

Method 2.

It turns out that for k ≤ 5 it is not only optimal to take cycles of length 1 and 2, but also of length 3, 4
and 5 in this order.

The reasoning is that when we are talking about cycles of length L, there are already no cycles of smaller
lengths in the graph. Let’s recall our proof that we can take cycles of length 2: we supposed the opposite,
took the optimal solution, took the cycles that contain the edges we want, took those edges out to form
a cycle, and formed a cycle out of the chains that were remaining. We get only 2 cycles this way, which
can be less than L. But let’s say that L = 3 and the 3 edges were all in different cycles in the optimal
solution, otherwise we are good. Those cycles should all have a length of at least 3 because there are no
shorter cycles in the graph now. Thus the length of our "leftover"cycle is at least 6, which is greater than
the number of vertices, thus by pigeonhole principle there will be a repeated vertex, thus we can split this
cycle in at least 2. This is the main idea of the proof, the casework for L = 4 is left to the reader.

Technically the second method is O(n), because it just doesn’t work for k > 5, but in the limitations of
this problem the first method is faster, but both should pass without trouble.

Problem I. Flood Fill

Author: Lucian Bicsi
Solved by: 11/13

First to solve: KhNURE_Energy is not over

Let’s look at each initial connected component in picture A. For each component, we can either leave
the colour the same, or change it. Let’s choose for each component what we’ll do. Which situations are
impossible? Well, it’s not hard to see that two neighbouring components cannot both change colour,
because once one of them changes colour, they will have the same colour, and we can’t change that in the
future.

Let’s build a graph: the vertices are connected components and they are connected if they have a common
border. Based on previous observation, the set of components in which you want to change the colour
should form an independent set in this graph. And it’s clearly possible for any independent set: just use
the operation on the components you want, since they are not neighbours they don’t affect each other
(so the sample explanation is a red herring actually, you never have to apply the operation on the same
component more than once).

For each component we can calculate the score if we change the colour in it and if we don’t, now we want
to find weighted maximum independent set in the graph we constructed. Our graph is bipartite since two
neighbouring components have different colours. It’s a standard problem, which is reduced to max flow.

Problem J. ABC Legacy

6

Southeastern European Regional Programming Contest 2021
November 21, 2021

Author: Anton Trygub
Solved by: 67/93

First to solve: KNU_Duplee

Suppose that we will form X subsequences “AB”, Y subsequences “AC”, Z subsequences “BC”, and let
cntA, cntB, cntC be the numbers of times “A”, “B”, “C” appear in S, correspondingly. Then cntA = X + Y ,
cntB = X +Z, cntC = Y +Z, so we get X = cntA+cntB−cntC

2 , Y = cntA−cntB+cntC
2 , Z = −cntA+cntB+cntC

2 .
If these values are negative/aren’t integers, there is clearly no way to split the string in the desired way.

Otherwise, we found our X,Y, Z. Look at the occurences of “B”: it’s going to appear X times in “AB”, as
the second letter, and Z times in “BC”, as the first letter. Clearly, it’s optimal to use first Z occurrences
of “B” in subsequences “BC”, and last X in subsequences “AB”. Also, we want to take as “right” “A”s as
possible in “AB” and as “left” “C” as possible in “BC”, as we will have to form subsequences “AC” after.

So, for each of the first Z occurrences of “B”, we will match it with the first yet unused occurrence of “C”
to the right of it, if there exists any, and for each of the last X occurrences of “B”, we will match it with
the last yet unused occurrence of “A” to the left of it, if there exists any. As for remaining characters, we
just have to check if the given string of Y “A”s and Y “C” can be split into subsequences “AC”. If for some i
the i-th occurrence of “A” goes after the i-th occurrence of “C”, there is no solution, otherwise match i-th
occurrence of “A” with the i-th occurrence of “C” for each i.

Problem K. Amazing Tree

Author: Andrei Constantinescu
Solved by: 17/32

First to solve: LNU Bulldogs

As always, when we want to find the lexicographically minimal order of something, we should do it greedily
in a left-to-right fashion. It’s clear that the first element will be one of the leaves, and for any leaf we can
construct a post-order with this leaf as the first element. Let v be the leaf with the minimum id, and u
be its only neighbour. To construct a post-order with v as the first element, we have to go from the (yet
unknown) root straight to v, and the last vertex we will visit before v is u (v itself can’t be the root).
After visiting v we will return to u, and there can be two possibilities:

• u itself is the root. Then we have to visit all other neighbours of u first, and finish in u. It’s clear
that we need to visit the neighbours in increasing order of the minimum leaf in them.

• u is not the root. Then we have to visit all neighbours of u, except v and the one leading to the
root, then write down u in the post-order, and then go up.

Since we can choose where the root will be, we can reformulate the greedy as follows:

• We have to visit all neighbours of u, except v and the one with the largest min leaf.

• Then, either traverse the remaining subtree or put u in the order and continue in the remaining
neighbour.

We did it only on the first step, but it is not hard to see that it works like that in the future also: we have
arrived at u from v, that’s all that is important.

The implementation can be made much easier if you root the tree in the min leaf, because now you will
always go down the tree.

Problem L. Jason ABC
Author: Roman Bilyi

Solved by: 41/52
First to solve: KNU_0_GB_RAM

7

Southeastern European Regional Programming Contest 2021
November 21, 2021

Let’s show that 2 operations are always enough:

Let p be the minimum prefix length that has exactly n same characters. Without loss of generality, it’s
character A. So there are n characters A, bp < n characters B and cp < n characters C in prefix of length
p. Now we can replace segment [p+ 1, p+ n− bp] by B and segment [p+ n− bp + 1, 3 · n] by C. After that
there are exactly n characters A, B and C.

We should still check if it’s possible to achieve the goal with 0 or 1 operation.

Zero operations are possible only if there are the same number of every character initially and we could
check that.

Let’s check if it’s possible to use only one operation. Iterate over character which is used in this operation.
Let this character be A. Let b be the number of B and c be the number of C in S. We need to find such
segment [l, r] that there are exactly n characters B and n characters C among S[1..l − 1] + S[r + 1..3n],
where + means concatenation of the strings. This means that there should be b−n characters B and c−n
characters C in S[l..r]. Let’s find values bi and ci — number of characters B and C respectively in prefix of
length i. Now segment [l, r] is good iff br− bl−1 = b−n and cr− cl−1 = c−n. We can find if such segment
exists using two pointers or set.

Complexity: O(n).

Problem M. Counting Phenomenal Arrays

Author: Anton Trygub
Solved by: 8/14

First to solve: UAIC O(ne)

For an array b1, b2, . . . , bk of integers ≥ 2, define its imbalance as b1 + b2 + . . .+ bk − b1b2 . . . bk.

Lemma 1: For any integers b1, b2, . . . , bk, bk+1, all of which are at least 2, the imbalance of the array
[b1, b2, . . . , bk+1] is smaller or equal to the imbalance of the array [b1, b2, . . . , bk].

Proof: We have to show that b1 + b2 + . . .+ bk + bk+1 − b1b2 . . . bkbk+1 ≤ b1 + b2 + . . .+ bk − b1b2 . . . bk,
or, equivalently, that bk+1(b1b2 . . . bk − 1) ≥ b1b2 . . . bk. This follows as
bk+1(b1b2 . . . bk − 1) ≥ 2(b1b2 . . . bk − 1) = b1b2 . . . bk + (b1b2 . . . bk − 2) ≥ b1b2 . . . bk.

Lemma 2: All elements of any phenomenal array of size n don’t exceed n.

Proof: If there is only one element not equal to 1, clearly the sum will exceed the product. So, there are
at least two such elements, consider two largest of them — x and y. Suppose that x ≥ n+ 1, y ≥ 2, then
the balance of [x, y] is x+ y− xy = x+ y(1− x) ≤ x+2(1− x) = 2− x ≤ −(n− 1), so we would have to
add at least n− 1 ones to it to make the balance 0 (adding elements larger than 1 decreases the balance
even more, and adding 1 increases it by one), but we have only n− 2 elements remaining.

Note that for k = 1, the balance is always 0. So, such balance is always nonpositive.

Consider now any phenomenal array of size n, and look at its elements which are not equal to 1 — let
them be b1, b2, . . . , bk. It means that the remaining n− k elements are 1s. This means that the balance of
[b1, b2, . . . , bk] has to be precisely −(n− k). Moreover, each such array b1, b2, . . . , bk corresponds to some
precise number of ones that you have to add to it to make it phenomenal.

So in theory, what we would have to do is to find all arrays b1, b2, . . . , bk of integers ≥ 2, to calculate their
balance bal, and to add

(k+(−bal)
(−bal)

)
to the f(k + (−bal)) for each such array. But how would we consider

all such arrays?

First, note that we don’t have to consider arrays for which k + (−bal) > n. Second, note that we only
care about the product and the sum of b1, b2, . . . , bk.

So, let’s implement some recursive algorithm

recurse(int sum, int product, int size, int ways, int iter)

8

Southeastern European Regional Programming Contest 2021
November 21, 2021

We will keep the sum of the currently chosen elements, their product, the number of chosen elements,
and the number of ways to rearrange them, and we will start from recurse(0, 1, 0, 1, 2). For every
iter from 2 to n, we will try to add a few elements equal to iter to the current array, without breaking
the condition size + (−bal) ≤ n. One option is to not add any element equal to iter at all, from which
we will recurse to

recurse(sum, product, size, ways, iter+1).

Another option is to add cnt instances of number i, which would lead us to

recurse(sum+iter·cnt, product· itercnt, size+cnt, ways·
(size+cnt

cnt

)
, iter+1). Iterate cnt until the

bal + (size+ cnt) exceeds n.

At each step of recursion, add ways ·
(
size+(−bal)

size

)
to f(size+ (−bal)).

This recursion runs very fast, as the product increases much faster than the sum does. It runs fast enough
even for n ≤ 106 (in under 2 seconds), so you shouldn’t have experienced any TL issues if you tried any
recursive approach.

Problem N. A-series

Author: Lucian Bicsi
Solved by: 109/112

First to solve: KhNURE_Lacrimosa

Let’s look at the smallest size, AN . What if bN < aN? Clearly, the condition on the number of pieces of
size AN is satisfied, and there is no need to cut any A(N − 1) piece to obtain additional ANs. As we
can’t transform smaller pieces into larger ones, we can just forget about size AN .

What if bN > aN? It means that we have to cut piece A(N − 1) at least need = d bN−aN2 e times. And,
similarly to the first paragraph, it’s meaningless to make more such cuts.

So we have to add need to the answer and subtract need from aN−1, denoting that we cut need of those
(even if aN−1 becomes negative), and forget about size AN after that.

Let’s continue doing this. For each i from N − 1 to 0, find how many cuts of piece Ai do we need to
make to get enough A(i + 1) pieces, add it to the answer, and adjust the number of pieces of paper Ai
accordingly.

In the end, we will have to consider only the pieces of size A0. If a0 will be at least as big as b0, output
the answer we were summing up. Otherwise, output −1.

9

