
All-Ukrainian Collegiate Programming Contest 2021. II stage
Ukraine, October, 16, 2021

Problem A. Testing Your Geometry Template
Firstly, let’s look at two points with coordinates (x1, y1) and (x2, y2) with x1 6= x2. Where does
perpendicular bisector to the segment between them intersect the x-axis?

Let’s say it’s at point (X, 0), then we must have (x1 − X)2 + y21 = (x2 − X)2 + y22, implying
(x21 + y21)− (x22 + y22) = 2X(x1 − x2), so X =

(x2
1+y21)−(x2

2+y22)
2(x1−x2)

Now, we need to find the largest and smallest such values over all pairs (x1, y1), (x2, y2) of points from
the statement with x1 6= x2.

How to check if the largest value doesn’t exceed t?

Note that it’s equivalent to the following: (x21 + y21)− (x22 + y22) ≤ 2t(x1 − x2) whenever x1 > x2, which is
equivalent to (x21 + y21)− 2tx1 ≤ (x22 + y22)− 2tx2, when x1 < x2.

Note that it’s enough to check this inequality only for pairs (x1, y1), (x2, y2) such that there is no point
(x3, y3) with x1 > x3 > x2. Indeed, if the inequality holds for any two points with “adjacent” x-coordinates,
it would hold for any two points. So, let’s check it only for them.

So we could say just “sort points by x coordinate, find this X for every pair of adjacent points with
different x coordinates, and take the largest of them”. But everything is not so easy. What if we have
many points with x coordinate x1 and many points with x coordinate x2? We would need to find this X
for every pair of them to check properly. But... would we?

Note that to maximize (x2
1+y21)−(x2

2+y22)
2(x1−x2)

under fixed x1, x2 with x1 > x2, we just have to maximize |y1| and

minimize |y2|. So, the algorithm for finding the largest value of X =
(x2

1+y21)−(x2
2+y22)

2(x1−x2)
would go as follows:

sort points by the x-coordinate, in case of equality put points with bigger absolute value of y coordinate
first. Then, find this X for every pair of adjacent points whose x coordinates are different, and take the
largest of them.

Similarly, find the smallest such X, and take the difference between them.‘

Problem B. Politicians and Competitive Programmers
Let’s assign a value of 1 to competitive programmers and 0 to politicians. Then it’s easy to see, that the
query simply returns bitwise XOR of the values of X, Y , Z.

So, we have the following problem: n ≥ 5 binary values x1, x2, . . . , xn are hidden. We can choose 3 distinct
indices (i, j, k), where i can’t be selected as i more than once, and get xi ⊕ xj ⊕ xk. We need to find all
the values.

Let’s start with first four values, and ask y1 = x1⊕x2⊕x3, y2 = x2⊕x3⊕x4, y3 = x3⊕x4⊕x1, y4 = x4⊕x1⊕x2.
From here, we can deduce y1 ⊕ y2 ⊕ y3 = x3, y2 ⊕ y3 ⊕ y4 = x4, y3 ⊕ y4 ⊕ y1 = x1, y4 ⊕ y1 ⊕ y2 = x2.

After we determined the first 4 values, we can determine the next ones one by one by asking for
xi+1 ⊕ xi ⊕ xi−1.

Problem C. Fast Squarier Transform
Note that there can be at most 6326 different numbers among ai. Indeed, if there are at least 6327 distinct
elements there, their sum is at least 0 + 1 + . . .+ 6326 = 20005975 > 20000000.

So, for every element x of a count cnt[x] — the number of times it appears in a, for every element y of
b count cnt[y] — the number of times it appears in b, and for each such pair (x, y) add to the answer
cnt[x]cnt[y]b

√
|ai − bj |c

This works in O(n+m+
√
sumA

√
sumB).

Problem D. LIS of Pairs
First, let’s count the number of pairs with LIS = 4. Clearly, we should consider only pairs with ai < bi,

Page 1 of 5

All-Ukrainian Collegiate Programming Contest 2021. II stage
Ukraine, October, 16, 2021

and have to count the number of such pairs (i, j) that bi < aj . For this, count the cnt[x] — the number
of pairs with ai < bi ≤ x for each x with prefix sums in O(n+m), and for each (ai, bi) with ai < bi add
cnt[ai − 1] to the answer.

We count the number of pairs with LIS = 1 similarly.

Let’s count the number of pairs (i, j) with f(i, j) ≥ 3, and then we will subtract the number of pairs with
LIS = 4 from it, obtaining the number of pairs with LIS = 3. We will find the number of pairs with
LIS = 2 similarly.

Now, if f(i, j) ≥ 3, at least one of the following must hold:

• ai < bi < max(aj , bj)

• min(ai, bi) < aj < bj

It’s easy to count the number of pairs (i, j), which satisfy ai < bi < max(aj , bj): again, count cnt[x] —
the number of pairs (ai, bi) with ai < bi ≤ x, we can do this with prefix sums. Similarly we can find the
number of pairs (i, j) which satisfy min(ai, bi) < aj < bj . It remains to subtract the number of pairs
which satisfy both to avoid double counting.

So, we consider only pairs with ai < bi, and need to count the number of pairs (i, j) such that bi < bj and
ai < aj . This can be done with 2D prefix sums: count cnt[x][y]— the number of pairs with ai ≤ x and
bi ≤ y, and add dp[ai − 1][bi − 1] for every pair.

This solution works in O(n+m2).

Problem E. Patriotic Painting 1
Suppose that point x is counted by some painter. What condition on k must hold so that no matter what
k painters are chosen, at least one of them paints x? Suppose that t painters would paint x. Then, we
can choose n− t painters such that none of them would paint x, but in any set of n− t+1 painters there
would be at least one which would paint x. So, the condition is k ≥ n− t+ 1.

So, we just need to find the min_painted — the smallest of these numbers t over all points which are
painted by at least one painter, and output n−min_painted+ 1.

We can find this min_painted by traversing the line from left to right and keeping the number of painters
who would paint the current point. When we meet the end of the segment of some painter, we subtract
one from this number, when we meet the start, we add one to it, and we just need to find the smallest
nonzero value, that’s all.

Note: It seems that many teams in the start misread the statement, thinking that we only paint integer
points. Because of this, we had a weird monitor effect, where teams were scared to try this problem, even
though it’s one of the easiest in the set. Sad...

Problem F. Patriotic Painting 2
Suppose that in the final coloring there will be m yellow consecutive segments of lengths c1, c2, . . . , bm.
Consider some segment, it was formed from some subset of operations, suppose with length
b1, b2, . . . , bs. It’s clear that from segments b1, b2, . . . , bs we can form any yellow segment of length from
max(b1, b2, . . . , bs) to b1 + b2 + . . .+ bs.

How would we check if we could arrive to these lengths c1, c2, . . . , cm then? We would look at all possible
partitions of the set {1, 2, . . . , k} into m nonempty parts (where order of these groups matters), and for
each of them we would see if corresponding ci lies between corresponding max and corresponding sum.

This means that for checking we don’t care precisely about values of ci, we care only about their position
relative to all possible maxes and all sums. So, let’s write all these bounds (sums of all subsets and values
ai − 1), sort them, obtaining some d1, d2, . . . , dt, and solve the following problem:

Page 2 of 5

All-Ukrainian Collegiate Programming Contest 2021. II stage
Ukraine, October, 16, 2021

How many ways are there to select m yellow segments so that the length of the j-th one is in the range
[dij +1, dij+1]? If we can solve this problem, then we will iterate through all possible choices of indices ij
(there are less than 20 of them, which gives at most 204 configurations in total), and for each choice, we
will check if we can obtain it from some partitioning of the set {1, 2, . . . , k} into m nonempty parts.

So, from now on we will be focusing on the following problem:

Main Problem: How many ways are there to select m yellow segments so that the length of the i-th one
is in the range [li, ri]?

First, let’s solve the following:

Subproblem: How many ways are there to select m yellow segments so that the length of the i-th one is
at least [li]?

This is an easy problem. Indeed, let’s subtract li − 1 from n for each i, reducing the problem to selecting
m yellow segments of length at least 1 on the strip of length n1. It’s the same as selecting 2m distinct
ends of the segments, which is C(n1 + 1, 2m).

Now, just do inclusion-exclusion, substituting ri or li−1, and solving the subproblem above 2m times.

Problem G. If You Are Homeless... Just Build a House
For a given region h × w with values b1 ≤ b2 ≤ . . . ≤ bhw, the answer is the sum of |bi − bmed|, where
med = bhw2 c. It can also be stated as the following: let’s keep the set of smallest med numbers S1, and
the set of largest med numbers S2, then the answer is just the sum of numbers from S2 minus the sum of
numbers from S1.

Now, let’s make some kind of sliding window and support these sets S1, S2 together with the sums in
them in the process. Let’s start from the area h×w in the left upper corner, and move it to the right by
1 every time. We would need to do O(h) insertions/deletions per moving it by 1 to the right.

Next, let’s move it down by 1, which takes O(w) insertions/deletions, and start moving it to the left, then
again down and to the right, and so on.

Overall we will make O(mnh+nw) insertions/deletions while moving this sliding area, which gives runtime
O((mnh+nw) log hw). The answer is just the smallest value sum(S2)−sum(S1) over all possible positions
of the area.

Problem H. Another ICPC String Problem
Let’s keep 26 bitsets bita, bitb, . . . , bitz, where corresponding bitset has ones only at positions where his
letter is present. Updating these bitsets after queries of type 1 is trivial, let’s see how to deal with queries
of type 2.

Suppose that we received a string p1p2 . . . pk as the query string. Then consider bitset
bitp1AND(bitp2 >> 1)AND(bitp3 >> 2) . . .AND(bitpk >> (k − 1)) (here by >> x we denote the shift of
bitset to the left by x, and by AND — binary AND of the bitsets.

Clearly, in this bitset we will have ones only at such positions pos that
spos = p1, spos+1 = p2, . . . , spos+k−1 = pk, which is precisely what we need. To find the number of
the ones set, use bitset.count().

Total complexity would be O(n(q+sum(|p|))
64), which passes comfortably.

Problem I. Vovochka
As the order of numbers in the input doesn’t matter, let’s suppose that they are given in sorted order,
and let’s say that the median of numbers ai, aj , ak is aj for i < j < k.

Suppose that our triples are (axi , ayi , azi) with xi < yi < zi. Wlog, they are sorted by the position of the
middle element, so that y1 < y2 . . . < yn. Then, we must have yi ≥ 2i for each i, as max(xj , yj) ≤ yi for
j ≤ i. Similarly, we must have yi ≤ 3n+ 1− 2(n+ 1− i), or yi ≤ n− 1 + 2i.

Page 3 of 5

All-Ukrainian Collegiate Programming Contest 2021. II stage
Ukraine, October, 16, 2021

It can be shown that these conditions on yi are sufficient: if 2i ≤ yi ≤ n − 1 + 2i, we can select xi, zi in
such a way that each number from 1 to 3n is in exactly one triple and xi < yi < zi. Just take xi as the
i-th number which isn’t one of yi, and zi as the n + i-th number which isn’t one of yi. Indeed, before yi
there are at least i numbers which aren’t one of y, and after yi there are at least n+1− i numbers which
aren’t one of y.

Now, how to count the number of distinct multisets ay1 , ay2 , . . . , ayn under the conditions above? We
will do dp, let’s process the groups of equal numbers one by one from left to right. Suppose that we are
processing a group of k numbers, that we already processed l numbers, and selected s from them as y-s,
let’s denote dp[l][s] as the number of different ways to select those s y-s from first l numbers.

How many numbers can we select as ys from our group of k numbers? If we select s1 of them, then the
following conditions have to hold:

• s+ s1 ≤ n (trivial)

• l + k ≥ 2(s+ s1) (as s+ s1-th y has to be among first l + k elements)

• l+ k + 1 ≤ n− 1 + 2(s+ s1 + 1) if s+ s1 + 1 ≤ n, (as s+ s1 + 1st y, if it exists, has to be starting
from l + k + 1-th element).

It’s easy to show that if these conditions hold, we can choose s1 ys among l + 1, l + 2, . . . , l + k, so that
all conditions on them would be true.

So, we just have a dp, where we can transition from dp[l][s] to dp[l+ k][s+ s1] when the conditions above
hold. It’s easy to see that for each s1 we have at most n transitions, and the sum of all s1 is precisely 3n,
so the total complexity is O(n2).

Problem J. Typical ICPC Problem
For a tree, it’s a pretty well-known problem, but let’s remind the solution.

Let’s process the nodes in order from the smallest weight to the largest, keeping the current right end r.
For each node with weight i from 1 to r, we will also keep the value t[i], which is r − i+ 1− the number
of edges whose both ends have weights in range [i, r]. Then, the range [l, r] will be good if and only if t[l]
will be equal to 1 when we processed all nodes with weight up to r.

It’s easy to update all the values when moving from r to r + 1: we just have to add/subtract 1 on some
segments. Also note that all numbers are always at least 1, and just have to return the number of ones.
This hints to the segment tree solution, which allows queries of adding on subsegment, finding minimum
on subsegment, and finding the number of minimums.

But it’s not a tree, it’s a CACTUS!!! How to deal with this case then?

In the tree case, we used that a forest is connected iff the number of nodes − number of edges is precisely
1. In the cactus case, we have something similar: cactus is connected iff the number of nodes − number of
edges + number of cycles is precisely 1. So, the algorithm would be to do the following: determine all edge
cycles, which are luckily disjoint, for each of them determine the largest and smallest weight of a node, and
when we are processing nodes in the same order of weight, add 1 on prefix [1, smallest weight on a cycle]
when r becomes equal to the largest weight on the cycle.

Problem K. ICPC and Typos
Let m denote the length of the string s.

Note that typos of different types produce words with different number of letters, so it’s enough the
number of possible words that may occur from each type separately, and then add them.

For type 3 it’s easy: each letter can be replaced by n− 1 other letters, so here we get m(n− 1) words.

Page 4 of 5

All-Ukrainian Collegiate Programming Contest 2021. II stage
Ukraine, October, 16, 2021

For type 1: let’s consider strings s1s2 . . . si−1si+1 . . . sm for each i from 1 to n. When are two such strings
equal? s1s2 . . . si−1si+1 . . . sm = s1s2 . . . sj−1sj+1 . . . sm with i < j if si = si+1, si+1 = si+2, . . ., sj−1 = sj .
In other words, when all letters from si to sj are equal. This implies that the number of distinct words is
1 + the number of such i that si 6= si+1.

For type 2: let’s count the number of ways to insert some character. Let the word after inserting it be t.

If t1 6= s1, the character different from s1 must have been inserted before the first position, which gives
n− 1 words. Otherwise, s1 = t1, and we safely assume that we inserted after the first position (even if we
inserted s1 before s1, we could have inserted it after s1, and nothing would change. So we can consider
t[2 : m+ 1], s[2 : m] from now on.

This iterative process would give us (n−1)+(n−1)+ . . .+(n−1) (m times) + n (resulting from inserting
any letter in the end) different words.

Page 5 of 5

