
Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem A 
Equivalence 

 

 
Input File: A.in 
Output File: standard output 
Time Limit: 0.2 seconds (C/C++) 
Memory Limit: 256 megabytes 
 
A propositional formula is generated by the following grammar: 
 <formula> ::= <variable> | ~<formula> | ( <formula> ) | <formula> <operator> <formula> 

 <operator> ::= ^ | V    

 <variable> ::= a-zA-Z  (except character V) 

where ‘^’ encodes boolean AND, ‘V’ encodes boolean OR. 

 
An interpretation is a truth-assignment for all variables ocurring in a formula. The truth-value of a 
formula with respect to an interpretation can be determined by applying boolean operations on 
the values of variables, in the standard way. 
 
Two propositional formulae are equivalent if they produce the same truth-value for all possible 
interpretations. 
 
The input file will contain two formulae generated by the above grammar. The formulae are 
separated by the newline character. Variables are encoded by alphabetic characters, except the 
character ‘V’ which is reserved for encoding OR . Each formula will have at most 51 variables. 

Whitespaces can occur freely anywhere in the input.  
 
The output must be 1 if the two formulae are equivalent, and 0 otherwise.  

 
In your implementation, you do not need to take into account operator precedence (priority). For 
instance, a formula such as: 
  x ^ y V z  

will be presented as either  
 (x ^ y) V z or  

  x ^ (y V z). 

 

 Sample input Sample output 
x ^ y 

y ^ x 

1 

A ^ (~y V z) 

(A^~y) V (A ^ z) 

1 

a V (b ^ ~b) V (c ^ ~c) 

a 

1 

~x ^ ~y 

~(x V y) 

1 

a ^ b ^ c ^ d 

a V b V c V d 

0 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

acmacm

 



 

Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem B 
Tree of Almost Clean Money 

 

 
Input File: B.in 
Output File: standard output 
Time Limit: 4 seconds (C/C++) 
Memory Limit: 256 megabytes 
 
The tree of Almost Clean Money (or ACM Tree, for short) consists of N (1≤N≤500000) vertices in 
which, well, (almost clean) money is growing (contrary to the old saying that money doesn’t grow 
on trees). The vertices are numbered from 0 to N-1, with vertex 0 being the root of the tree. Every 
vertex i except vertex 0 has a parent p(i) in the tree, such that p(i)<i. Initially, every vertex 
contains v(i) (0≤v(i)<1000000007) monetary units. Due to its special properties, the tree has 
attracted the attention of a large money laundering organization, who wants to use the tree for its 
money “cleansing” business. This organization wants to execute Q (1≤Q≤50000) operations on 
the tree. Each operation consists of two steps: 

1) In step 1, K (1≤K≤1000) vertices from the tree are chosen: x(1), …, x(K) (0≤x(i)≤N-1) – 
the same vertex may be selected multiple times here. In each of these vertices, an 
amount of monetary units is added (thus increasing the amount of monetary units in 
them). More exactly, y(i) (0≤y(i)<1000000007) monetary units are added to the selected 
vertex x(i) (1≤i≤K). 

2) In step 2, two vertices u and v (0≤u,v≤N-1) are chosen and the organization wants to 
know the total amount of money found in the vertices located on the unique path in the 
tree between the vertices u and v (with u and v inclusive). 

 
The organization hired you to find the answer for step 2 of each of the Q operations and promised 
you a hefty amount of money if you succeed. 
 
Input 
The first line of input contains the number of tree vertices N. The next N-1 lines contain two 
space-separated integers, p(i) and i, each describing an edge of the tree. The next line contains 
N space-separated values: the initial amount of monetary units in each vertex, v(0), …, v(N-1). 
The next line contains the number of operations Q. Each of the next Q lines describes an 
operation. Each operation is described by 9 space-separated integers, in this order: K, x(1), y(1), 
A, B, C, D, u, v (0≤A,B,C,D<1000000007). The values x(2≤i≤K) and y(2≤i≤K) are generated as 
follows: 
 x(i) = (A*x(i-1) + B) modulo N 
 y(i) = (C*y(i-1) + D) modulo 1000000007 
 
Output 
For each of the Q operations print a line containing the answer to step 2 of the operation. When 
computing the answer for an operation, the effects of steps 1 from previous operations need to be 
considered, too (i.e. after adding y(i) monetary units to a vertex x(i), these units remain added to 
the vertex when executing subsequent operations, too). 
 
 
 

acmacm

 



 
 

 Sample input Sample output Explanation 
4 

0 1 

0 3 

1 2 

1 2 3 4 

3 

1000 1 1 1 0 1 0 0 2 

2 0 5 1 1 2 2 2 3 

1 3 7 999 999 999 999 1 3 

1006 

1027 

1031 

 

In the first operation the value 1 is added 

1000 times to vertex 1 (note A=C=1, 

B=D=0). The path between 0 and 2 

contains the vertices 0, 1 and 2. The total 

amount of monetary units in them is 1006. 

In operation 2: x(1)=0, y(1)=5, x(2)=1, 

y(2)=12. The path between 2 and 3 contains 

all the vertices of the tree. 

In operation 3: K=1, so A, B, C, D are 

irrelevant. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem C 
Primes 

 

Input File: C.in 
Output File: standard output 
Time Limit: 1 second (C/C++) 
Memory Limit: 256 megabytes 
 
Define a mass split operation for the multiset of positive integers K: for each integer ki in the 
multiset we will replace it with the pair di and ki/di, where di is the random integer divisor of ki, 
which is greater than 1, and less than ki. If ki is prime, it remains untouched. All divisors can be 
chosen equiprobably. 
 
For example, let’s take the multiset {2, 10, 12, 12}. Then {2, 2, 3, 3, 4, 4, 5}, {2, 2, 2, 3, 4, 5, 6} 
and {2, 2, 2, 2, 5, 6, 6} will be the possible outcomes of the first mass split (first and third with 
probability 0.25, second with probability 0.5), and {2, 2, 2, 2, 2, 2, 3, 3, 5} will be the only possible 
outcome of the second mass split. 
 
If we start with a multiset containing one integer N, find the expected number of mass splits 
needed to obtain a multiset with prime numbers only, where the expected number is the 
probability-weighted average of all possible values. 
 
Input 
First line of the input contains integer T (1 ≤ T ≤ 10

4
) – number of test cases. Each test case 

consists of one integer N – the starting multiset (2 ≤ N ≤ 10
10

). 
 
Output 
For each test case, print one number – the expected number of mass splits, with absolute or 
relative 
error not worse than 10

-6
. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

acmacm

 

 Sample input Sample output 
3 

3 

12 

48 

0 

2.0 

3.3333333 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem D 
LCM 

 

Input File: D.in 
Output File: standard output 
Time Limit: 0.1 seconds (C/C++) 
Memory Limit: 256 megabytes 
 
You are given two natural numbers A and B. Determine the natural number N such that the least  
common multiple of the numbers A + N and B + N is minimal. 
 
Input 
The only line of the input contains two natural numbers: A and B. None of them is exceeding 10

9
. 

 
Output 
Output the natural number N such that LCM(A + N, B + N) is minimal. If there are several values 
of N which yield the minimum, output the smallest one. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acmacm

 

 Sample input Sample output 
4 10 2 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem E 
Taxies 

 

Input File: E.in 
Output File: standard output 
Time Limit: 1 second (C/C++) 
Memory Limit: 256 megabytes 
 
Some employees of the company had to work overtime and finished their work late in the night. K 
(2 ≤ K ≤ 15) of the employees, who commonly use public transport, ask the company manager to 
have the taxi fee reimbursed for them. There are a lot of available taxis, and the manager can 
order an individual taxi for each employee. However, he finds it too expensive, because a taxi can 
take some passengers (ranging from 1 to 4), and a ride in the same taxi for people who live close 
to each other is much cheaper. On the other hand, the manager decides that it would be too 
impolite to make some employees wait outdoors as the taxi driver gives their colleagues a lift and 
returns back to pick them up. Therefore, the manager wants to choose the cheapest method to 
transport all the employees to their homes, satisfying such constraints: 
 
• All K employees are divided into groups, where each group contains 1, 2, 3 or 4 people; 
the manager decides how people are grouped. 
• Employees of the same group share the same taxi. 
• All the people from the group go to one of the group member’s home, where this person 
gets out of the taxi; the rest of the people from the group (while there are any) go to the next 
person’s home, and so on. The order (which person will be the 1st, which the 2nd, and so on) is 
also defined by the manager. 
• The manager himself is not one of the K employees and does not belong to any group. 
He drives his own car, and does not want to share it with any employee. 
 
The company and employees’ homes are located in the vertices of a weighted graph. Most of 
edges of the graph are undirected (two-way roads), but some may be directed (one-way). The 
weight of each edge of the graph is the fee of traveling in a taxi along the edge. The graph is 
strongly connected, i. e. there exists a path from each vertex of the graph to any other vertex. 
The taxi costs include the distance fee and the boarding fee. The boarding fee is charged per car, 
without reference to the distance covered and the number of passengers. 
 
Input 
The 1st line contains the number of vertices N (5 ≤ N ≤ 20000) and the number of edges M (N ≤ 
M ≤ 50000); afterwards, there are M lines, each of which contains four integers: the 1st number is 
1 or 2, denoting a one-way or a two-way road; then, two numbers u, v (u ≠ v, 1 ≤ v ≤ N, 1 ≤ u ≤ 
N) denoting which vertices are connected (if the road is one-way, it’s directed from u to v); the 4th 
number (ranging from 5 to 5000) denotes the weight (cost of traveling in a taxi) of the edge.  
The next line of input data contains the boarding fee (integer number ranging from 500 to 50000). 
The next line contains the index (ranging from 1 to N) of the vertex where the company is located. 
The next line contains the number of employees K (2 ≤ K ≤ 15). The next line is the last and 
contains K numbers (each ranging from 1 to N) — indices of the vertices where the employees 
live. Different employees may live in the same vertex, but nobody lives in the vertex where the 
company is located. 
 
 

acmacm

 



Output 
Print one number — the minimal total cost of taking all employees to their homes. 
 

Note In the 1st sample, the minimal total cost 4500 can be reached when one taxi car takes all 
the 4 employees and goes in the order: the 2nd employee’s home, then the 1st’s, the 4th’s and 
the 3rd’s. In the 2nd sample, the minimal cost 3700 can be reached, when two taxi cars are used, 
and one of the cars goes first to the 1st employee’s home, then to the 2nd’s, another car — first 
to the 3rd’s, then to the 4th’s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sample input Sample output 
6 7 

2 1 2 200 

2 1 3 1000 

2 1 4 1200 

2 2 3 900 

2 6 2 1300 

2 6 4 200 

2 4 5 100 

1000 

1 

4 

2 3 5 6 

4500 

6 7 

2 1 2 200 

2 1 3 1000 

2 1 4 1200 

2 2 3 900 

2 6 2 1300 

2 6 4 200 

2 4 5 100 

500 

1 

4 

2 3 5 6 

3700 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem F 
Irrational Roots 

 

 
Input File: F.in 
Output File: standard output 
Time Limit: 0.1 seconds (C/C++) 
Memory Limit: 256 megabytes 
 
Let n be a natural number, n ≤ 8. Consider the following equation: 
 

x
n
 + cn-1x

n-1
 + cn-2x

n-2
 + … + c1x + c0 = 0 

 
where cn-1, cn-2, …, c1, c0 are integers and c0 ≠ 0.  
 
It is known that all the n roots of the equation are real numbers. We consider that each root r of 
the equation satisfies the condition: -10 ≤ r ≤ 10. Also, there might be roots that appear more than 
once. 
 
Find the number of irrational roots of the equation (an irrational root is a root that is an irrational 
number). 
 
Input 
The input file contains a single test. The first line of the input file contains the value of n. The 
second line contains the values of cn-1, cn-2, …, c1, c0: each two consecutive values are separated 
by a single space. 
 
Output 
The result will be written to standard output. 
 

 

 Sample input Sample output 
6 

12 -12 -454 -373 3754 1680 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acmacm

 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem G 
Race 

 

 
Input File: G.in 
Output File: standard output 
Time Limit: 2 seconds (C/C++) 
Memory Limit: 256 megabytes 
 
Bob is member of the organizing committee of the annual motorcycling race. His job is to label 
the contest map. All the roads of the map are bidirectional and connect two places. Each place on 
the map must be labeled regular or service, such that no place has more than max neighbors of 
its own label. Let's define degree the maximum number of roads reaching a place. Then max = 
degree / 2. Your job is to help Bob.  

 
The input file starts with the number n (0<n<1001) of places on the map, on a separate line. Each 
place is identified by a natural number from 0 to n - 1. Then follows n lines containing the 
description of places, each on a separate line. Line i, i = 0,.., n-1, describing place i, has the 
following form: 

number_of_neighbors: neighbor1 neighbor2 ... neighborm 

 
The ouput file must contain the labeled map. The format is the same except that each line 
describing a place starts with the label of the place: 0 for regular places and 1 for service places.  

label number_of_neighbors: neighbor1 neighbor2 ... neighborm 
 
The sample describes a map with 3 places that are all connected. The first line of the input 

contains the number of places. The following lines contain the description of places. For example 
the line 2: 1 2 stands for the place identified by 0, that has 2 neighbors identified as 1 and 2. In 

the output file the line 1 2: 1 2 stands for the place 0 that has label 1.  

  

 Sample input Sample output 
3 

2: 1 2 

2: 0 2 

2: 0 1 

3 

1 2: 1 2 

0 2: 0 2 

0 2: 0 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

acmacm

 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

Problem H 
Railway Tickets 

Input File: H.in 
Output File: standard output 
Time Limit: 0.5 seconds (C/C++) 
Memory Limit: 256 megabytes 
 
The common rule for transporting passengers in long-distance trains at many railways is that 
each ticket should specify a reserved place. It’s rather convenient for passengers to know that 
they will have a guarantee for a vacant place beforehand. However, such a rule can pose the 
problem of false lack of places. 

Consider such an unlikely but still possible case. A train with two seats goes from A to C, with 
only one intermediate stop at station B. Suppose seat 1 is bought for the A-B segment, and seat 
2 is bought for the B-C segment. Therefore, there is no available seat between A and C. 
However, a traveler can buy seat 2 for the A-B segment and seat 1 for the B-C segment, and 
move from one place to another during the trip. 

Your task is to write a program, which, knowing which tickets are already sold, finds the number 
of source-destination pairs of stations which can still be reached by buying two or more tickets 
and switching places. You may assume that any seat which is not sold between a specific 
source-destination may be bought. 

Input 
The 1

st
 input line contains the number K (3 ≤ K ≤ 1000) of places in the train; the 2

nd
 line contains 

the number N (3 ≤ N ≤ 10000) of stations in the train’s route; the 3
rd

 line contains the number of 
the tickets already sold T (0 ≤ T ≤ min(10

5
, K(N–1))). Each of the next T lines contains three 

integer numbers pl, st, fn, describing tickets: pl stands for the number of the reserved place 
(assuming that places are sequentially numbered in range 1 to K over all the train, without 
dividing by carriages), and st, fn are the departure, destination stations, respectively (stations are 
numbered along the train’s route consequently from 1 to N). In each ticket, st < fn, i. e. arrival 
station’s index is strictly greater than departure station’s one. Different tickets for the same place 
are possible only if their travel ranges do not overlap (each next ticket can start either at the 
station where the previous ticket for the place ends, or somewhere later on the route). 
 
Output 
Print one integer — the requested number of stations pairs. 

Note These 10 pairs are: (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 6), (2, 7), (3, 6), (3, 7), and (8, 10). 
For other pairs of stations, it’s either possible to buy a direct ticket with specific reserved place or 
otherwise the train has no vacant places, even for a passenger, who is ready to buy separate 
tickets and change his or her place during the trip. 

acmacm

 

 Sample input Sample output 
3 

10 

6 

2 9 10 

3 5 9 

1 2 10 

2 1 4 

2 7 8 

3 1 2 

10 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem I 
Olympic Parade 

 

 
Input File: I.in 
Output File: standard output 
Time Limit: 0.5 seconds (C/C++) 
Memory Limit: 4 megabytes 
 
SEERC organizing committee decided to make this year’s opening ceremony in unusual way – 
organize a parade of contestants on the city streets. This year N people (contestants, coaches 
and guests), that represent universities from participating countries, will go on the streets, trying 
to impress spectators by original costumes and loud songs. Each university is represented by a 
group of people and has a unique identifier (ID) that is carried by each person in the group. To 
make the parade well organised and entertaining, each group should be lined up in several rows, 
each consisting of K people. 
  
Only one university was not able to line up according to the mentioned rule, and you need to find 
it’s ID. 
 
Input 
The first line at input contains integer N and K, separated by a single space (1 ≤ N ≤ 1 000 000,  
2 ≤ K ≤ 1). Following N lines contain IDs C1, C2, ... , Cn (0 ≤ Ci ≤ 1 000 000 000, 1 ≤ i ≤ N) of N 
people. 
 
Output 
The single line at output should contain one integer – the answer for the problem. 
 

 Sample input Sample output 
10 3 

1 

1 

2 

3 

1 

3 

3 

2 

2 

2 

2 

 

 
 

 

 

 

 

 

 

 

 

 

acmacm

 



Southeastern European Regional Programming Contest 
Bucharest, Romania – Vinnytsya, Ukraine 

October 17, 2015 

 

 

Problem J 
Word by mouth 

 

 
Input File: J.in 
Output File: standard output 
Time Limit: 2.5 seconds (C/C++) 
Memory Limit: 256 megabytes 

 
A group of N friends are playing a word-by-mouth game, where one friend (the leader) starts 
saying a word (either ‘hat’ or ‘cat’) to each of the other friends. m of the N friends pronounce the 

words incorrectly such that instead of ‘hat’ a listening friend may understand ‘cat’. For simplicity 

we assume that such a friend will always say ‘cat’ to his other friends, no matter what another 

friend said to him. The leader may also have problems pronouncing, in which case he will say 
different things to each friend. 

 
In order to try to reach a consensus, so that each friend recovers the same message, they try the 
following Word By Mouth algorithm WBM(m): 

 
Algorithm WBM(m), m > 0 

1) The leader sends his word to every other friend. 
2) For each friend i, let vi be value that friend i receives from the leader. Then, friend i acts 

as the leader in Algorithm WBM(m-1) to send the value vi to each of the other friends. A 
message originated from friend i cannot reach i again. 

3) For each i and j≠i, let vj be the value that friend i received from friend j in step (2) using 
Algorithm WBM(m-1). Then friend i uses as his value the majority of the values (v1, v2, …, 

vN-1). In case of equality of values, the friends decide for ‘cat’. 

 
Algorithm WBM(0) 

1) The leader sends his word to very other friend 
2) Each friend uses the word received from the leader 

 
The game starts by the leader running the algorithm WBM(m).  

 
The following examples show how the friends play in different scenarios. Except from the 
messages sent by the leader, each time a friend sends a message, he adds his ID to the 
message, so that the receiver knows which path the message came from. 
 
Example 1: 

As shown in Figure 1, there are N=4 friends with the leader transmitting the word cat to friend 2 

but the word hat to friends 3 and 4. Friend 2 receives the following: cat (from 1), hat (from 3), 

hat (from 4). He decides for hat. Friend 3 receives the words: hat (from 1), cat (from 2), hat 

(from 4). He decides for hat. Friend 4 receives the words: hat (from 1), cat (from 2), hat (from 

3). He decides for hat. All the N-1 friends (excluding the leader) decide for the same word, hat, 

even though the leader sent different words to each friend. 
 

 
 

acmacm

 



Example 2: 
In Figure 2, we have again N=4 friends but m=2 of them send incorrect words. We see that in this 

case there are more messages being exchanged. Friend 2 sends cat to friend 3 and then friend 

3 forwards this to friend 4 (shown by ‘2,3:cat’ in the figure). Friend 2 also sends the message 

cat directly to friend 4 (shown by ‘2:cat’  in the figure). Therefore, friend 4 receives the 

messages cat (directly, '2:cat') and cat (indirectly, '2,3:cat') from friend 2 and decides that 

friend 2 said cat. Similarly, friend 4 receives from friend 3 the words cat (directly) and cat 

(indirectly, ‘3,2:cat’) and decides that friend 3 said cat. Friend 4 received hat from the leader. 

In the end, friend 4 decides for the word cat, which is the majority (friends 2 and 3 said cat, 

friend 1 said hat). 

 
Your task is to determine the words decided by the friends that do not confuse the words, 
excluding the leader. If the leader pronounces correctly, then there are N-m-1 such friends (friend 
4, in example 2), else there are N-m such friends (friends 2, 3 and 4, in example 1). 

 
Input 
The first line contains the numbers N (2<N<101) and m (0<m<8). 
The second line contains m positive integer numbers, representing the IDs of the friends that will 
modify the messages (the leader always has ID=1). 

The following N-1 lines contain the word (‘cat’ or ‘hat’) that the leader (i=1) sends to each of the 

other N-1 friends. 
 
Output 
On the output you should put N-m-1 (if the leader pronounces correctly) or N-m (if the leader  can 

pronounce incorrectly) words (‘cat’ or ‘hat’), one per line, representing the words understood by 

the friends that pronounce correctly (this excludes the leader). 
 
 

 Sample input Sample output 
4 1 
1 
cat 
hat 
hat 

hat 
hat 
hat 

 

 
 

 

 


